Example: Alice has 3 vubtrellas (total) at home and at work.

- takes an umbrella of it is raining, if there is one
- doesn't tans an mebrella of it is not raining
- A rains each trip w.p.p (independently of the other trips)

Q: What fraction of true does Alice get wet?
Solution: $X_{n}=\#$ umbrellas at current location

$$
\text { state space }=\{0,1,2,3\} .
$$

Chain is irreducible and ergodic (aperrodia, positive recurrent)
Answer is $\quad \pi_{0} \cdot p^{2}$ probability 7 rams
time with no umbrella
, where π is the stationary distribution.

To find π_{1}, we can try to fond a solution to:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \pi _ { 0 } P _ { 0 3 } = \pi _ { 3 } P _ { 3 0 } } \\
{ \pi _ { 3 } P _ { 3 1 } = \pi _ { 1 } P _ { 1 3 } } \\
{ \pi _ { 1 } P _ { 1 2 } = \pi _ { 2 } P _ { 2 1 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\pi_{0}=\pi_{3}(1-p) \\
\pi_{3}=\pi_{1} \\
\pi_{1}=\pi_{2}
\end{array}\right.\right. \\
& \pi_{1}=\pi_{2}=\pi_{3}, \sum_{i} \pi_{1}=1, \quad \pi_{0}=(1-p) \pi_{3} \\
& \Rightarrow \quad \pi_{3}(1-p)+3 \pi_{3}=1, \Rightarrow \pi_{1}=\pi_{2}=\pi_{3}=\frac{1}{4-p}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \pi_{0}=\frac{1-p}{4-p} \\
& \Rightarrow \pi_{0} \cdot p=\frac{1-p}{4-p} \cdot p
\end{aligned}
$$

Material for Midterm 1 ends here.

A criterion for time-reversibility.
Proposition (Kolcuogorov's criterion): An $\frac{\text { irreducible }}{\text { ergodic M.C. is }}$ reversible if and only if for all finite sequences of states (i,....in),

$$
p_{i_{1} i_{2}} p_{i_{2} i_{3}} \cdots p_{i_{n-1}} p_{i n i}=p_{i_{1} i_{n}} p_{i_{n} i_{n-1}} \cdots p_{i_{2} i_{1}} .
$$

Proof: $\Rightarrow n=2: \quad p_{i, i 2} p_{i_{2 i}}=p_{i_{2} i_{1}} p_{i_{1 i} i_{2}} \quad$ always true!

$$
\begin{aligned}
n=3: & p_{j k} p_{k i}=p_{j k} p_{k i} \mid \cdot \pi_{i} p_{i j}=\pi_{j} p_{j i} \\
\Leftrightarrow & \Pi_{i} p_{i j} p_{j k} p_{k i}=\pi_{j} p_{j i} p_{k k} p_{k i} \\
\Leftrightarrow & \pi_{i} p_{i j} p_{j k} p_{k i}=p_{j i} \pi_{k} p_{k j} p_{k i} \\
\Leftrightarrow & \mathbb{P}_{i} p_{i j} p_{j k} p_{k i}=p_{j i} p_{k j} p_{i k} R_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad P_{i j} P_{j k} P_{k_{i}}=P_{j i} P_{i k} P_{k j} \\
& \text { and the reasoning the same when } \\
& n \geq 3 \text {. }
\end{aligned}
$$

\Leftrightarrow
For any couple of states (i, j) and any sequence of states in, ..., is:

$$
p_{i i_{1}} p_{i 2 i_{3}} \cdots p_{i k j} p_{j i}=p_{i j} p_{j i_{2}}-p_{i, i}
$$

Summing over all possible sequences in, , id:

$$
\begin{aligned}
& \sum_{i_{11} \ldots i d}\left(p_{i i_{1}} p_{i 2 i_{3}} \cdots p_{i k j}\right) p_{j i}=p_{i j} \sum_{i_{1}, \ldots, i d}\left(p_{j i k} \cdots p_{0, i}\right) \\
& \Rightarrow \quad p_{i j}^{(k)} p_{j i}=p_{i j} p_{j i}^{(k)} \quad \forall k \\
& k \rightarrow \infty \quad \text { } k \rightarrow \infty \\
& \pi_{j} p_{j i}=p_{i j} \pi_{i}
\end{aligned}
$$

A classical example of time-reversible M.C.: the Ehrenfest chain (1907 Parl \& Talian Ehrenfest)
\rightarrow Toy model of gas behaviour in two containers
\rightarrow Consider M balls distributed in 2 urns.
At cads step select a ball at random and move it to the other urn.

$$
\begin{array}{lll|l}
& \ddots \because & L \cdot . & i \\
X_{n}=\# \text { balls in urn \#1. } & \ddots \cdot & \ddots & i+1 \\
S=\{0,1, \ldots, M\} & \ddots \ddots & L . J & i+2 \\
& \lfloor\ddots & L . & i+3 \\
\vdots
\end{array}
$$

The chain is ergodic (why?) finite state space, aperiodic \Rightarrow ergodirent what is the stationary distribution?

$$
\begin{array}{ll}
P\left(X_{n}=i+1 \mid X_{n-1}=i\right)=\frac{M-i}{M} . & \pi_{i} p_{i, i+1}=\pi_{i+1} p_{i+1, i} \\
P\left(X_{n}=i-1 \mid X_{n-i}=i\right)=\frac{i}{M} . & \pi_{i} \frac{M-i}{\mu K}=\pi_{i+1} \cdot \frac{i+1}{M} \\
& \frac{\pi_{i}}{\pi_{i+1}}=\frac{i+1}{M-i}
\end{array}
$$

