We see one last theoretical concept useful to compute liveriting probabilities. Given a M.C. Xo, X1,..., Xn, we can observe if backwards on true. × (···) 5, 50 5, 50-2 The Marcor property (past and future are independent given present) is symmetric under this reversal, so it allows to see Ye as a M.C. Q: What is the relation to the original process? Can use say something about limiting probabilities? Theorem : Given a M.C. (Xn) 0 ≤ n ≤ N with stationary distribution II (we assume it exists) and with $P(X_{o}=j)=T_{j}$, let $y_{n}=X_{N-n}$. Thom, (Yn) DENEN is a M.C. with stationary distribution II and transition prodabilities Qij = Piillj · Remark: The existence of the stationary distribution is necessary for the reversed process to be homogeneous. (will see this later) Proof: 1) Markov property for In: $P(Y_{n=j} | Y_{n-1} = i, Y_{n-2} = \cdots) = P(Y_{n=j} | Y_{n-1} = i)$ $E = \frac{P(X_{N-n=j}, X_{N-n+1} = i, X_{N-n+2} = \cdots)}{P(X_{N-n+1} = i, E)} = \frac{P(E|X_{N-n=j}, X_{N-n+1} = i)}{P(E|X_{N-n+1} = i)}$. P(XN-n=j, XN-nH=i) $P(X_{N-n+1}=i)$ $= P(X_{N-n}=j|X_{N-n+1}=i) = P(Y_n=j|J_{n-1}=i) = RHS.$

2) Transition probabilities:
$$Q_{ij} = P(S_n = j | S_{n-1} = i) = \int_{ij}^{s_{ij}} \frac{1}{||P(X_{N-n} = j)|} P(X_{N-n} = j)}{P(X_{N-n} = i)}$$

$$= P_{ji} \prod_{ij} (Using the assumption that $X_{n} = T_{j}$

$$= T_{j} \prod_{i} Q_{ij} = T_{i} P_{ij} \prod_{i} Q_{ij} = \sum_{i} P_{i} P_{ij} \prod_{i} Z_{ij} = T_{j}$$

$$= T_{j} \prod_{i} Q_{ij} = T_{j}$$

$$P_{ij} = T_{i}$$

Definition: A M.C. is time-remeable if $Q_{ij} = P_{ij}$.
Remore: We always have $Q_{ii} = P_{ij}$

$$P_{ij} = T_{ij} P_{ij} = T_{ij}$$

$$P_{ij} = T_{i} P_{ij} = T_{ij} P_{ij} P_{ij} P_{ij} P_{ij} P_{ij} P_{ij} P_{ij}$$

$$P_{ij} = T_{i} P_{ij} P_{ij} P_{ij} P_{ij} P_{ij} P_{ij} P_{ij} P_{ij} P_{ij} P_{ij}$$

$$P_{ij} = T_{i} P_{ij} P_{ij$$$$

H.C. is reversible (>)
$$T_i P_{ij} = T_j P_{ji} V_{iij}^{(4)}$$
, i.e., $P_{ij} = P_{ij}$
Proposition: let X, be an irreducible ergodic H.C.
If we can find $K_i \ge 0$ st. $x_i P_{ij} = x_j P_i V_{ij}$, $\sum x_i = 1$,
then $x_i = T_i$ and the H.C. is reversible.
Proof: If $V_{ij} \times_i P_{ij} = x_j P_i$, then $\sum_i x_i P_{ij} = \sum_i x_i P_{ij} = x_j E_{ij} = x_j$.
and $\sum x_i = 1 \Rightarrow X = T_i$, $TIP = T_i$, and $P_{ij} = P_{ij}$.
Scomple: After has 3 numberlas (Artel) at home and at wore.
• takes an numberla $f \neq i_i$ not reversing
• takes an numberla $f \neq i_i$ not reversing
• takes an numberla $f \neq i_i$ not reversing
• takes an numberla for $P_i = P_i$ (Adquidently of the other tryps)
Q: What fraction of three does Affiel get wet?
Solution: $X_n = \#$ numberlas at current location
state space = $\sum P_i P_i = P_i$
Chain is irreducible and ergodic (agenode, positive reversed)
Answer is $T_0 = P$, where T_i is the stationary
two withen no distribution.
To find T_i , we can try to find a solution to:

$$\begin{cases} \overline{u}_{0} P_{03} = \overline{u}_{3} P_{30} \\ \overline{u}_{3} P_{31} = \overline{u}_{1} P_{13} \\ \overline{u}_{1} P_{12} = \overline{u}_{2} P_{21} \end{cases} \qquad (\overline{u}_{3} = \overline{u}_{1} \\ \overline{u}_{1} = \overline{u}_{2} \\ \overline{u}_{1} = \overline{u}_{2} P_{21} \end{cases} \qquad (\overline{u}_{0} = (1-p) \overline{u}_{3} \\ \overline{u}_{1} = \overline{u}_{2} \\ \overline{u}_{1} = \overline{u}_{2} P_{13} \\ (\overline{u}_{1} = \overline{u}_{2} = \overline{u}_{2} P_{13} \\ \overline{u}_{1} = (1-p) + 3\overline{u}_{3} = (1-p) \overline{u}_{1} = \overline{u}_{2} = \overline{u}_{3} = \frac{1}{1-p} \\ \overline{u}_{1} = (1-p) + \overline{u}_{1} = (1-p) + 1 \\ \overline{u}_{2} = \overline{u}_{2} = \overline{u}_{2} P \\ \overline{u}_{2} = \overline{u}_{2} + P \\ \overline{u}_{2} = \overline{u}_$$