Time reversibility (Ross 4.8)
We see one last theoretical concopt useful to compute limiting probabilities.
Given a M.C. $X_{0}, X_{1}, \ldots, X_{n}$, we can observe if baccewards on time.

The Markov property (past and future are independent given present) is symmetric undor this reversal, so if allows to see Y_{k} as a M.C.
Q: What is tho relation to the original process? Can we say something about limiting probabilities?
Theorem: Given a M.C. $\left(X_{n}\right)_{0 \leq n \leq N}$ with stationary distribution II (we assume it exists) and with $P\left(X_{0}=j\right)=\pi_{j}$, let $Y_{n}=X_{N-n}$.
Phon, $\left(y_{n}\right)_{0 \leq n \leq N}$ is a M.C. with stationary distribution Π and transition probabilities $Q_{i j}=\frac{P_{j i} \pi_{j}}{\pi_{i}}$.

- Remark: The existence of the stationary distribution is necessary for the reversed process to be homogeneous. (will see this later)
Proof: 1) Markov property for y_{n} :

$$
\begin{aligned}
& P\left(y_{n}=j \mid y_{n-1}=i, y_{n-2}=\cdots\right)_{E}=P\left(y_{n}=j \mid y_{n-1}=i\right) \text { by Markov property } \\
& L H S=\frac{P\left(X_{N-n}=j, X_{N-n+1}=i, X_{N-n+2}=\cdots\right.}{P\left(X_{N-n+i}, E\right)}=\frac{P\left(E \mid X_{N-n=j, X_{N-n+1}=i}\right)}{\frac{P\left(E \mid X_{N-n+1}=i\right)}{P\left(X_{N-n}=j, X_{N-n+1}=i\right)}} \\
& \quad \frac{\frac{P\left(X_{N-n+1}=i\right)}{P}}{=P\left(X_{N-n}=j \mid X_{N-n+1}=i\right)=P\left(y_{n}=j \mid y_{n-1}=i\right)=\text { RHS. }} .
\end{aligned}
$$

2) Transition probabilities: $Q_{i j}=P\left(y_{n}=j \mid y_{n-1}=i\right) \xlongequal{\text { see 1) }}$

$$
\begin{aligned}
& =\frac{P\left(X_{N-n}=j \mid X_{N-n+1}=i\right) P\left(X_{N-n}=j\right)}{P\left(X_{N-n t}=i\right)} \\
& \left.=P_{j i} \frac{\pi_{j}}{\pi_{i}} \quad \text { (Using the assumption that } X_{0} \sim \pi\right)
\end{aligned}
$$

3) π is stationary:

$$
\begin{aligned}
& \sum_{i} \pi_{i} Q_{i j}=\sum_{i} X_{i} P_{j i} \frac{\pi_{j}}{\pi_{i}}=\sum_{i} p_{j i} \pi_{j} \\
&=\pi_{j} \frac{\sum_{i} p_{j i}}{=1}=\pi_{j} . \\
&=\pi .
\end{aligned}
$$

Definition: A M.C. is tive-reversible of $Q_{i j}=P_{i j}$.
Remark: We always have $Q_{i i}=P_{i i} \quad P_{j i}^{\prime \frac{\pi}{2 j}}$

- In this case, $\pi_{i} P_{i j}=\pi_{j} P_{j i} \quad \forall i, j$: this forms a et of "detailed balance" equalities.
Interpretation of detailed balance: the proportion of jumps at stativarity $\quad i \rightarrow j=\pi_{i} P_{i j}$

$$
=\text { the proportion of jumps } j \rightarrow i\left(=\pi_{j} p_{j i}\right) \text {. }
$$

Example: 1) 2-state M.C.

$$
\left.\underline{P}=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right) \cdot \begin{array}{l}
\text { We know } \\
\underline{I I}=\left(\frac{q}{p+q}, \frac{p}{p+q}\right.
\end{array}\right) .
$$

and $\pi_{0} \rho_{01}=\pi_{1} \rho_{10}$, so it is reversible.
2). Raw. on triangle (of Hew)

$$
Q_{2}^{0} \quad P=\left[\begin{array}{ccc}
0 & p & 1-p \\
1-p & 0 & p \\
p & 1-p & 0
\end{array}\right]
$$

P is doubly stochastic, irreducible and ergodic.
$\Rightarrow \pi=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is stationary.
M.C. is reversible $\Leftrightarrow \pi_{i} P_{i j}=\pi_{j} P_{j i} \quad \forall_{1, j}^{i \neq j}, i . e, P_{i j}=P_{j i}$

$$
\Leftrightarrow P=\frac{1}{2}
$$

Proposition: Let X_{n} be an irreducible ergodic M.C.
If we can find $x_{i} \geq 0$ st. $x_{i} p_{i j}=x_{j} P_{j i} \quad \forall i, j, \sum x_{i}=1$, then $x_{i}=\pi_{i}$ and the M.C. is reversible.
Proof: If $\forall i, j x_{i} p_{i j}=x_{j} p_{j i}$, then $\sum_{i} x_{i} p_{i j}=\sum_{i} x_{j} p_{j i}=x_{j} \sum p_{j i}=x_{j}$. and $\sum_{x_{j}=1} \Rightarrow x=\pi, \quad \pi P=\pi$, and $Q_{i j}=\frac{P_{j} i_{j}}{\pi_{i}}=R_{i j}$.
Example. Alice has 3 umbrellas (total) at home and at work.

- takes an mubrella 7 it is raining, if tare is one
- doesn't tans an mepbrella if it is not raining
- At rains each trip w.P.P (independently of the other trips)

Q: What fraction of time does Alice get wet?
Solution: $\quad X_{n}=\#$ umbrellas at current location state space $=\{0,1,2,3\}$.

Chain is irreducible and ergodic (aperiodic, positive recurrent)
Answer is $\pi_{0} \cdot p^{\text {probability } 7 \text { rams }}$
, where π is the stationary distribution

To find π, we can try to fond a solution to:

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \pi _ { 0 } P _ { 0 3 } = \pi _ { 3 } P _ { 3 0 } } \\
{ \pi _ { 3 } P _ { 3 1 } = \pi _ { 1 } P _ { 1 3 } } \\
{ \pi _ { 1 } P _ { 1 2 } = \pi _ { 2 } P _ { 2 1 } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\pi_{0}=\pi_{3}(1-p) \\
\pi_{3}=\pi_{1} \\
\pi_{1}=\pi_{2}
\end{array}\right.\right. \\
& \text { so } \pi_{1}=\pi_{2} \bar{\pi}_{3}, \sum_{i} \pi_{i}=1, \pi_{0}=(1-p) \pi_{3} \\
& \Rightarrow \quad \pi_{3}(1-p)+3 \pi_{3}=1, \Rightarrow \pi_{1}=\pi_{2}=\pi_{3}=\frac{1}{4-p} \\
& \Rightarrow \pi_{0}=\frac{1-p}{4-p} \quad \pi=\left(\frac{1-p}{4-p}, \frac{1}{y-p}, \frac{1}{y-p}, \frac{1}{4-p}\right) \\
& \Rightarrow \pi_{0} \cdot p=\frac{1-p}{4-p} \cdot p
\end{aligned}
$$

