Assignment 6: Due Monday, March 9 at start of class

Problems to be handed in

Problem 1

Let N(t) be a Poisson process with rate λ , with S_n the time of the nth event. Find the following quantities (no mark awarded if no justification is provided).

- 1. $\mathbb{E}(N(4))$ and Var(N(4)).
- **2.** $\mathbb{E}(S_5)$ and $Var(S_5)$.
- 3. P(N(4) < 2) and $P(S_2 > 4)$.
- **4.** $P(S_3 > 5 \mid N(2) = 1)$ and P(N(3) < 2).

Problem 2

- 1. Let X_1 , X_2 and X_3 be independent exponential r.v.'s with respective rates λ_1 , λ_2 and λ_3 (not necessarily equal). Find the probability that $X_1 = \min(X_i, 1 \le i \le 3)$ (hint: Compute $P(X_1 < \min(X_2, X_3))$.
- 2. Bob enters a bank as it is closing. There are three tellers 1, 2 and 3, independently serving three clients with exponentially distributed time with respective rate λ_1 , λ_2 and λ_3 . The first teller who finishes serves Bob with probability 0.5 (and closes otherwise). If this teller closes, the next one who finishes serves Bob.
- **2a.** What is the probability that Bob is served by teller 1?
- **2b** (bonus) What is the expected time Bob spends at the bank and the probability he leaves last?

Problem 3

8 runners R_i (i = 1, ..., 8) enter a race, with a time to complete respectively $\sim Exp(i)$ (and independent from the other runners).

- 1. Suppose the winner of the race (with the shortest time) earns 10 dollars and other runners lose
- 1. What is the expected gain of runner 1?
- **2.** If instead the winner of the race earns e^{-at} , where t is the time of the winner and a > 0 (losers make 0), what is the expected gain of runner 1?

Problem 4

We consider a process Z_n , where $Z_0 = 1$, and at each generation $n \ge 1$,

$$Z_{n+1} = I_n + \sum_{i=1}^{Z_n} X_{n,i},$$

where the $X_{n,i}$'s are i.i.d. with common distribution X, and the I_n 's are i.i.d and independent from the $X_{n,i}$'s, with common distribution I (this can be seen as a branching process where an immigrant population arrives at each generation and independently reproduces at the next one).

- 1. Find the probability generating function (pgf) of Z_n , as a function of the pgf's of I, X, and n.
- **2.** Let $X \sim Binomial(1, p)$ and $I \sim Poisson(\mu)$, where $0 and <math>\mu > 0$. Compute the pgf of Z_n as a function of μ , p and n.

- **3.** Compute the expectation and variance of Z_n .
- **4.** (bonus) For the same process as in (2), Identify the distribution associated with the pgf of Z_n as $n \to +\infty$. Conclude about the limiting behaviour of the process (transience, positive or noll-recurrence).

These provide additional practice but are not to be handed in. Textbook Chapter 5 examples 5.2-5.5 and 5.8-5.10, exercices 12, 15, 25, 26, 32, 34.