Assignment 5: Solutions

Problem 1

The probability of extinction P_{e} is the smallest fixed point of the generating function in $(0,1)$.

1. $G_{X}(s)=\frac{1}{3}+\frac{2}{3} s^{2}$; and $G_{X}(s)=s \Longleftrightarrow 1-3 s+2 s^{2}=0$, with 2 roots $s_{1}=\frac{1}{2}$ and $s_{2}=1$, so $P_{e}=\frac{1}{2}$.
2. $G_{X}(s)=\left(\frac{3+s}{4}\right)^{2} ; \mathbb{E}(X)=\frac{1}{2}<1$, so $P_{e}=1$.
3. $G_{X}(s)=\sum_{k=0}^{+\infty}\left(\frac{1}{4}\right)\left(1-\frac{1}{4}\right)^{k} s^{k}=\left(\frac{1}{4}\right) \sum_{k=0}^{+\infty}\left(\frac{3 s}{4}\right)^{k}=\frac{1}{4-3 s}$.
$G_{X}(s)=s \Longleftrightarrow 1-4 s+3 s^{2}=0$, with 2 roots $s_{1}=\frac{1}{3}$ and $s_{2}=1$, so $P_{e}=\frac{1}{3}$.

Problem 2

1. $G_{X}^{\prime}(s)=\sum_{k=1}^{+\infty} k P(x=k) s^{k-1}$, so $G_{X}^{\prime}(1)=\sum_{k=1}^{+\infty} k P(X=k)$ and

$$
\mathbb{E}(X)=G_{X}^{\prime}(1)
$$

Similarily, $G_{X}^{\prime \prime}(s)=\sum_{k=2}^{+\infty} k(k-1) P(x=k) s^{k-2}$, so $G_{X}^{\prime \prime}(1)=\sum_{k=2}^{+\infty} k^{2} P(X=k)-k P(X=$ $k)=\sum_{k=1}^{+\infty} k^{2} P(X=k)-\sum_{k=1}^{+\infty} k P(X=k)=\mathbb{E}\left(X^{2}\right)-\mathbb{E}(X)$.
Since $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E}(X))^{2}$, we obtain

$$
\operatorname{Var}(X)=G_{X}^{\prime \prime}(1)+G_{X}^{\prime}(1)-\left(G_{X}^{\prime}(1)\right)^{2}
$$

(or equivalently, $\left.G_{X}^{\prime \prime}(1)=\operatorname{Var}(X)-\mathbb{E}(X)+(\mathbb{E}(X))^{2}\right)$
2. By differentiating $G_{S_{N}}(s)=G_{N}\left(G_{X}(s)\right)$, we obtain $G_{S_{N}}^{\prime}(s)=G_{X}^{\prime}(s) G_{N}^{\prime}\left(G_{X}(s)\right)$. Since $G_{X}(1)=1$, we obtain, for $s=1, G_{S_{N}}^{\prime}(1)=G_{X}^{\prime}(1) G_{N}^{\prime}(1)$. From question (1), we thus have

$$
\mathbb{E}\left(S_{N}\right)=\mathbb{E}(N) \mathbb{E}(X)
$$

By differentiating twice, we obtain $G_{S_{N}}^{\prime \prime}(s)=G_{X}^{\prime \prime}(s) G_{N}^{\prime}\left(G_{X}(s)\right)+\left(G_{X}^{\prime}(s)\right)^{2} G_{N}^{\prime \prime}\left(G_{X}(s)\right)$, so $G_{S_{N}}^{\prime \prime}(1)=G_{X}^{\prime \prime}(1) G_{N}^{\prime}(1)+\left(G_{X}^{\prime}(1)\right)^{2} G_{N}^{\prime \prime}(1)$. From (1), we thus have $\operatorname{Var}\left(S_{N}\right)=G_{S_{N}}^{\prime \prime}(1)+$ $G_{S_{N}}^{\prime}(1)-\left(G_{S_{N}}^{\prime}(1)\right)^{2}=G_{X}^{\prime \prime}(1) G_{N}^{\prime}(1)+\left(G_{X}^{\prime}(1)\right)^{2} G_{N}^{\prime \prime}(1)+G_{X}^{\prime}(1) G_{N}^{\prime}(1)-\left(G_{X}^{\prime}(1) G_{N}^{\prime}(1)\right)^{2}$. Using (1) again with the expression for $G^{\prime \prime}(1)$ and simplifying the equation yields

$$
\operatorname{Var}\left(S_{N}\right)=\operatorname{Var}(N)(\mathbb{E}(X))^{2}+\mathbb{E}(N) \operatorname{Var}(X)
$$

3. As $Z_{n+1}=\sum_{i=1}^{Z_{n}} X_{n, i}$, for all $n \geq 1$, where the $X_{n, i}$'s are iid with same law X, we have from question 2 , that

$$
\mathbb{E}\left(Z_{n}\right)=\mathbb{E}(X) \mathbb{E}\left(Z_{n-1}=\mu \mathbb{E}\left(Z_{n-1}\right)\right.
$$

By induction,

$$
\mathbb{E}\left(Z_{n}\right)=\mu^{n} \mathbb{E}\left(Z_{0}\right)=\mu^{n}
$$

4. Similarly, considering $\operatorname{Var}\left(S_{n+1}\right.$ and using question 2 yield

$$
\operatorname{Var}\left(S_{n+1}\right)=\operatorname{Var}\left(S_{n}\right)(\mathbb{E}(X))^{2}+\mathbb{E}\left(S_{n}\right) \operatorname{Var}(X)=\operatorname{Var}\left(S_{n}\right) \mu^{2}+\mu^{n} \sigma^{2} .
$$

By induction, $\operatorname{Var}\left(S_{n+1}\right)=\mu^{n-1} \sigma^{2}\left(1+\mu+\ldots+\mu^{n}\right)$, so

$$
\operatorname{Var}\left(Z_{n}\right)=\left\{\begin{array}{cc}
\mu^{n-1} \sigma^{2} \frac{1-\mu^{n}}{1-\mu} & \text { if } \mu \neq 1 \\
n \sigma^{2} & \text { if } \mu=1
\end{array}\right.
$$

5. (a) $\mathbb{E}\left(Z_{n}\right)=\left(\frac{4}{3}\right)^{n}$ and $\operatorname{Var}\left(Z_{n}\right)=2\left(\frac{4}{3}\right)^{n}\left[\left(\frac{4}{3}\right)^{n}-1\right]$.
(b) $\mathbb{E}\left(Z_{n}\right)=\frac{1}{2^{n}}$ and $\operatorname{Var}\left(Z_{n}\right)=\frac{3}{2^{n+1}}\left(1-\frac{1}{2^{n}}\right)$.
(c) $\mathbb{E}\left(Z_{n}\right)=3^{n}$ and $\operatorname{Var}\left(Z_{n}\right)=2\left(3^{n}-1\right) 3^{n}$.

Problem 3

We first compute λ. We know that $\frac{5}{9}=\mathbb{P}(X \leq 10)=1-e^{-\lambda \times 10}$, so $e^{-10 \lambda}=\frac{4}{9}$, so $e^{-5 \lambda}=\sqrt{\frac{4}{9}}=\frac{2}{3}$ (or if we prefer $\lambda=-\frac{1}{5} \log \frac{2}{3}=\frac{1}{5} \log \frac{3}{2}$).

1. We have

$$
\mathbb{P}(X \geq 15)=e^{-15 \lambda}=\left(e^{-5 \lambda}\right)^{3}=\left(\frac{2}{3}\right)^{3}=\frac{8}{27}
$$

2. By the memoryless property of X, we have

$$
\mathbb{P}(X \geq 15 \mid X \geq 10)=\mathbb{P}(X \geq 5)=e^{-5 \lambda}=\frac{2}{3} .
$$

3. Here it is not sufficient to use the memoryless property, so we use the definition of conditional probability:

$$
\begin{aligned}
\mathbb{P}(X \geq 15 \mid 10 \leq X \leq 20) & =\frac{\mathbb{P}(15 \leq X \leq 20)}{\mathbb{P}(10 \leq X \leq 20)} \\
& =\frac{\mathbb{P}(X \geq 15)-\mathbb{P}(X>20)}{\mathbb{P}(X \geq 10)-\mathbb{P}(X>20)} \\
& =\frac{e^{-15 \lambda}-e^{-20 \lambda}}{e^{-10 \lambda}-e^{-20 \lambda}} \\
& =\frac{e^{-5 \lambda}-e^{-10 \lambda}}{1-e^{-10 \lambda}} \\
& =\frac{\frac{2}{3}-\left(\frac{2}{3}\right)^{2}}{1-\left(\frac{2}{3}\right)^{2}}=\frac{2 / 9}{5 / 9}=\frac{2}{5} .
\end{aligned}
$$

4. For all $y>0$, we have $\mathbb{P}(y \leq X \leq 2 y)=e^{-\lambda y}-e^{-2 \lambda y}$. To find when this is maximal, we compute the derivative:

$$
\frac{d}{d y} \mathbb{P}(y \leq X \leq 2 y)=-\lambda e^{-\lambda y}+2 \lambda e^{-2 \lambda y}=\lambda e^{-\lambda y}\left(-1+2 e^{-\lambda y}\right) .
$$

In particular, this derivative is positive when $e^{-\lambda y}>\frac{1}{2}$, that is $y<\frac{1}{\lambda} \log 2$, and negative when $y>\frac{1}{\lambda} \log 2$. Therefore, the maximum is attained for

$$
y=\frac{1}{\lambda} \log 2=5 \frac{\log 2}{\log (3 / 2)} \approx 8.55 .
$$

