Assignment 5: Due Monday, March 2 at start of class

Problems to be handed in

Problem 1

Compute the probability generating function of X, and the probability of extinction of the branching process associated with the following reproduction laws X :

1. $P(X=0)=\frac{1}{3}$ and $P(X=2)=\frac{2}{3}$.
2. $X \sim$ Binomial ($2, \frac{1}{4}$).
3. $X \sim$ Geometric $\left(\frac{1}{4}\right)$.

Problem 2

We recall that for a random variable X on $\mathbb{N}=\{0,1, \ldots\}$, we can associate the probability generating function $G_{X}(s)=\sum_{k=0}^{+\infty} P(x=k) s^{k}$, for all $s \in[-1,1]$.

1. Find expressions of $\mathbb{E}(X)$ and $\operatorname{Var}(X)$ using G^{\prime} and $G^{\prime \prime}$ (hint: use the formulas shown in class for $G^{\prime}(s)$ and $G^{\prime \prime}(s)$ and look at $\left.s=1\right)$.
2. Let $S_{N}=\sum_{i=1}^{N} X_{i}$, where X_{i} are i.i.d random variables and N is a random variable independent of the X_{i} 's. Show that

$$
\mathbb{E}\left(S_{N}\right)=\mathbb{E}(N) \mathbb{E}(X), \text { and } \operatorname{Var}\left(S_{N}\right)=\operatorname{Var}(N)(\mathbb{E}(X))^{2}+\mathbb{E}(N) \operatorname{Var}(X)
$$

where $\mathbb{E}(X)$ and $\operatorname{Var}(X)$ respectively are the common expectation and variance of the X_{i} 's. (hint: use the fact -shown in class- that $\left.G_{S_{N}}(s)=G_{N}\left(G_{X}(s)\right)\right)$
3. We now consider the branching process Z_{n}, with μ being the mean of the reproduction law and σ^{2} its variance. Show that $\mathbb{E}\left(Z_{n}\right)=\mu \mathbb{E}\left(Z_{n-1}\right)$ for all $n \geq 1$, and deduce $\mathbb{E}\left(Z_{n}\right)$ as a function of μ and n.
4 (bonus). Show that

$$
\operatorname{Var}\left(Z_{n}\right)=\left\{\begin{array}{cc}
\mu^{n-1} \sigma^{2} \frac{1-\mu^{n}}{1-\mu} & \text { if } \mu \neq 1 \\
n \sigma^{2} & \text { if } \mu=1
\end{array}\right.
$$

5. Application: Compute the expectation and variance of Z_{n} for the reproduction laws introduced in Problem 1.

Problem 3

Let X be an exponential variable with unknown parameter λ. We know that $\mathbb{P}(X \leq 10)=\frac{5}{9}$.

1. Compute $\mathbb{P}(X \geq 15)$.
2. Compute $\mathbb{P}(X \geq 15 \mid X \geq 10)$.
3. Compute $\mathbb{P}(X \geq 15 \mid 10 \leq X \leq 20)$.
4. Find the number $y>0$ for which $\mathbb{P}(y \leq X \leq 2 y)$ is the largest.

Recommended Problems

These provide additional practice but are not to be handed in. Textbook Chapter 4 (12th ed.): Exercises 55, 64-66. Chapter 5: Exercises 1-6.

