Assignment 5: Due Monday, March 2 at start of class

Problems to be handed in

Problem 1

Compute the probability generating function of X, and the probability of extinction of the branching process associated with the following reproduction laws X:

- **1.** $P(X = 0) = \frac{1}{3}$ and $P(X = 2) = \frac{2}{3}$.
- **2.** $X \sim \text{Binomial}(2, \frac{1}{4}).$
- **3.** $X \sim \text{Geometric} \left(\frac{1}{4}\right)$.

Problem 2

We recall that for a random variable X on $\mathbb{N} = \{0, 1, \ldots\}$, we can associate the probability generating function $G_X(s) = \sum_{k=0}^{+\infty} P(x=k)s^k$, for all $s \in [-1,1]$.

1. Find expressions of $\mathbb{E}(X)$ and Var(X) using G' and G'' (hint: use the formulas shown in class for G'(s) and G''(s) and look at s = 1). 2. Let $S_N = \sum_{i=1}^N X_i$, where X_i are i.i.d random variables and N is a random variable independent

of the X_i 's. Show that

$$\mathbb{E}(S_N) = \mathbb{E}(N)\mathbb{E}(X)$$
, and $Var(S_N) = Var(N)(\mathbb{E}(X))^2 + \mathbb{E}(N)Var(X)$,

where $\mathbb{E}(X)$ and Var(X) respectively are the common expectation and variance of the X_i 's. (*hint*: use the fact -shown in class- that $G_{S_N}(s) = G_N(G_X(s))$

3. We now consider the branching process Z_n , with μ being the mean of the reproduction law and σ^2 its variance. Show that $\mathbb{E}(Z_n) = \mu \mathbb{E}(Z_{n-1})$ for all $n \geq 1$, and deduce $\mathbb{E}(Z_n)$ as a function of μ and n.

4 (bonus). Show that

$$Var(Z_n) = \begin{cases} \mu^{n-1} \sigma^2 \frac{1-\mu^n}{1-\mu} & \text{if } \mu \neq 1\\ n\sigma^2 & \text{if } \mu = 1 \end{cases}$$

5. Application: Compute the expectation and variance of Z_n for the reproduction laws introduced in Problem 1.

Problem 3

Let X be an exponential variable with unknown parameter λ . We know that $\mathbb{P}(X \leq 10) = \frac{5}{9}$.

1. Compute $\mathbb{P}(X \ge 15)$.

- **2.** Compute $\mathbb{P}(X \ge 15 | X \ge 10)$.
- **3.** Compute $\mathbb{P}(X \ge 15 | 10 \le X \le 20)$.
- **4.** Find the number y > 0 for which $\mathbb{P}(y \le X \le 2y)$ is the largest.

Recommended Problems

These provide additional practice but are not to be handed in. Textbook Chapter 4 (12th ed.): Exercises 55, 64-66. Chapter 5: Exercises 1-6.