Assignment 4: Due Friday, February 7 at start of class

Problems to be handed in

Problem 1

We consider the Markov chain $\left(X_{n}\right)$ on the state space $\{1,2,3,4\}$ with transition matrix

$$
P=\left(\begin{array}{cccc}
0 & 1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 0 & 1 / 2 & 1 / 4 \\
1 / 4 & 1 / 4 & 0 & 1 / 2 \\
1 / 2 & 1 / 4 & 1 / 4 & 0
\end{array}\right) .
$$

1. Check that the uniform distribution on $\{1,2,3,4\}$ is stationary for this chain. In the other questions, we will assume that X_{0} is picked according to this distribution.
2. Compute $\mathbb{P}\left(X_{N-1}=1 \mid X_{N}=2\right)$.
3. Compute $\mathbb{P}\left(X_{N-2}=3 \mid X_{N}=4\right)$.

Problem 2

We fix $p_{A}, p_{B}, p_{C}>0$ such that $p_{A}+p_{B}+p_{C}=1$. Alice owns 3 books entitled A, B and C, that she keeps arranged in a pile. Each day, she reads one of the books at random and put it back at the top of the pile, without to touch the other two. She chooses the book A with probability p_{A}, book B with probability p_{B} and book C with probability p_{C}.
We denote by X_{n} the order of the pile on the n-th day (for example $X_{n}=A B C$ if A is at the top and C at the bottom).

1. Give the transitions of the Markov chain $\left(X_{n}\right)$.
2. Show that $\left(X_{n}\right)$ is irreducible and ergodic.
3. What is the limiting probability that $X_{n}=A B C$? Is the chain reversible? Hint: first compute $\pi_{B A C}+\pi_{B C A}$.

Problem 3

An urn contains 5 black or white balls. At time 0 , all the balls are white. At each step, we pick a ball uniformly in the urn, remove it and replace it with a ball of the opposite colour. Let B_{n} be the number of black balls at time n.

1. Compute the long-run fraction of time where $B_{n}=3$. Hint: Use reversibility.
2. What is the expected value of the first time where the urn contains 5 white balls again?
3. Is it true that $\mathbb{P}\left(B_{n}=3\right)$ converges?

Problem 4

Bob gambles in the following way: he starts with $i \geq 0$ dollars. At each step, he wins a dollar with probability $\frac{1}{3}$ and loses a dollar with probability $\frac{2}{3}$. However, if he has 0 dollar and loses, he stays at 0 dollar and can keep gambling (i.e. Bob cannot have debts). For example, if Bob has one dollar, loses twice and then wins, then he will have 1 dollar again. We are interested in the Markov chain $\left(X_{n}\right)$ describing the fortune of Bob at time n.

1. Give the transitions of $\left(X_{n}\right)$.
2. Find, with proof, the limiting probability that Bob owns i dollars at time n.

Recommended Problems

These provide additional practice but are not to be handed in. Textbook Chapter 4 (12th ed.): Exercises 42, 52, 54, 68, 71, 73.

