Assignment 2: Due Friday, January 24 at start of class

Problems to be handed in

Problem 1

1. Complete the following transition matrix, associated with a Markov chain defined on $\{1, \ldots 6\}$, such that transition probabilities from a given state are uniform (we also assume that each missing entry >0, unless this is impossible):

$$
\left(\begin{array}{cccccc}
. & \frac{1}{2} & 0 & 0 & 0 & 0 \\
\frac{1}{2} & . & 0 & 0 & 0 & 0 \\
0 & 0 & . & 0 & . & 0 \\
\frac{1}{4} & \frac{1}{4} & 0 & . & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & . & 0 & . & 0 \\
0 & . & 0 & . & . & 0
\end{array}\right)
$$

2. Draw the transition diagram and find the communicating classes (briefly justify your answers).
3. Find the period of the states, and if they are transient or recurrent (briefly justify).

Problem 2

We consider the random walk on the vertices of a polygon, represented by $S=\{1, \ldots N\}$, where the transition probabilities from a given vertex are given by p, q and $r>0$ according to Figure 1.

Figure 1: Random walk on the vertices of a polygon with N vertices. We only represent the transition from state 1 (same rule for the other states).

1. Write the transition matrix for $N=6$.
2. We suppose $p, q>0$. Show that the Markov chain is irreducible and that the uniform distribution is stationary.
3. We suppose $p, q>0$ and $r>0$. Show that the chain is aperiodic.
4. We suppose $p, q>0$ and $r=0$. Show that if N is even, then the chain has period 2 , and if N is odd, then the chain is aperiodic.
5. Suppose $p, q>0$ and $r=0$. What is the probability to visit all the other states before returning to its initial position (hint: think of the gambler's ruin problem)?

Problem 3

We study here the Gambler's Ruin Problem (seen in class, or in Ross' 4.5.1), with same hypothesis and notations (p being the probability to win a single game). As shown in class, we know that the wealth of the gambler follows a Markov chain X_{k}, that either reaches 0 or N with probability 1 , so we can define the random time $T=\min \left\{k \geq 0\right.$ s.t. $X_{k}=0$ or $\left.N\right\}$. We want to find the mean duration of the whole game, given initial wealth $k(0 \leq k \leq N)$, i.e. $\mathbb{E}_{k}(T)=\mathbb{E}\left(T \mid X_{0}=k\right)$.

1. What are $\mathbb{E}_{0}(T)$ and $\mathbb{E}_{N}(T)$? (boundary conditions)
2. We write $x_{k}=\mathbb{E}_{k}(T)$. Show that for $1 \leq k \leq N-1, x_{k}$ satisfies

$$
\begin{equation*}
p x_{k+1}-x_{k}+(1-p) x_{k-1}=-1 \tag{*}
\end{equation*}
$$

3. Solutions of $(*)$ can be written as $x_{k}=y_{k}+f(k)$, where y_{k} is solution of the homogeneous equation $p y_{k+1}-y_{k}+(1-p) y_{k-1}=0$, and $f(k)$ is a particular solution of $(*)$.
3.a Solve the homogeneous equation.
3.b Find a particular solution of the form $f(k)=C k$ when $p \neq \frac{1}{2}$, and $f(k)=D k^{2}$ when $p=\frac{1}{2}$, where C and D are constant.
3.c Using the boundary conditions, conclude that

$$
\mathbb{E}_{k}(T)=\left\{\begin{array}{cl}
\frac{1}{1-2 p}\left(\begin{array}{c}
\left.k-N \frac{1-(\alpha-1)^{k}}{1-(\alpha-1)^{N}}\right) \\
\text { if } p \neq \frac{1}{2} \\
k(N-k)
\end{array}\right. & \text { if } p=\frac{1}{2}
\end{array}, \text { where } \alpha=\frac{1}{p} .\right.
$$

4. (bonus) Reflecting boundary: Suppose the gambler has a wealthy relative, who guarantees them not to get ruined: The process exactly obeys the same rules, except when $X_{n}=0$, as the gambler receives a dollar so $X_{n+1}=1$. Find $\mathbb{E}_{k}(T)$ under these new conditions.

Recommended Problems

These provide additional practice but are not to be handed in. Textbook Chapter 4 (12th ed.): Exercises 14, 15, 16 and 17.

