Assignment 1: Due Wednesday, January 15 at start of class

Problems to be handed in

Problem 1

1. We consider the 2-state Markov chain $\left(X_{n}\right)_{n \geq 0}$ on $\{0,1\}$, such that $P_{01}=p$ and $P_{10}=q$, where $0<p, q<1$. Write the transition matrix of $\left(X_{n}\right)_{n \geq 0}$ and draw its transition diagram.
2. Find the stationary distribution Π of $\left(X_{n}\right)_{n \geq 0}$.
3. Show that $P\left(X_{n+1}=0\right)=(1-p-q) P\left(X_{n}=0\right)+q$.
4. (bonus) Show that $P\left(X_{n}\right)$ converges to Π when $n \rightarrow+\infty$.

Problem 2

We consider the random walk $\left(X_{n}\right)_{n \geq 0}$ on $\{-1,0,1\}$ such that at each step, the walker moves from 0 to -1 or 1 with equal probability, and from -1 and 1 , the walker moves to 0 only.

1. Draw the transition diagram and write the transition matrix of $\left(X_{n}\right)_{n \geq 0}$.
2. Compute the 2 - and 3 -step transition matrix. Deduce the n-step transition matrix.
3. We modify $\left(X_{n}\right)_{n \geq 0}$ as follows: At each step the walker first decides to move or stay by flipping a fair coin first and follows the same rules as above if the decision is to move. Draw the transition diagram and write the transition matrix of this new Markov chain $\left(Y_{n}\right)_{n \geq 0}$.
4. By induction, prove that the n-step transition matrix of $\left(Y_{n}\right)_{n \geq 0}$ is

$$
\frac{1}{2}\left(\begin{array}{ccc}
\frac{2^{n-1}+1}{2^{n}} & 1 & \frac{2^{n-1}-1}{2^{n}} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{2^{n-1}-1}{2^{n}} & 1 & \frac{2^{n-1}+1}{2^{n}}
\end{array}\right)
$$

5. We assume that $\left(Y_{n}^{2}\right)_{n \geq 0}$ is a Markov chain (on $\{0,1\}$). Find the transition matrix of $\left(Y_{n}^{2}\right)_{n \geq 0}$ and study its asymptotic behavior (remark: you can use Problem 1).
6. We modify this walk again so at position 1 , the walker directly moves back to 0 . Draw the transition diagram of the new chain $\left(Z_{n}\right)_{n \geq 0}$. Show that $\left(Z_{n}^{2}\right)_{n \geq 0}$ is not a Markov chain. (hint: Compare $P\left(Z_{2}^{2}=0 \mid Z_{1}^{2}=1\right)$ and $\left.P\left(Z_{2}^{2}=0 \mid Z_{1}^{2}=1, Z_{0}^{2}=0\right)\right)$.
7. (bonus) Let $\left(X_{n}\right)_{n \geq 0}$ be a Markov chain on \mathbb{Z}. Show that if $\forall x, y P_{-x, y}=P_{x, y}$, then $\left(X_{n}^{2}\right)_{n \geq 0}$ is a Markov chain.

Problem 3

We consider an urn with two blue balls and two red balls.

1. What is the probability of picking 2 balls of the same color?
2. We repeat the process of picking 2 balls (and place them back) 4 times. What is the probability of having picked 2 balls of the same color 2 times in a row? (hint: Example 4.12 in Ross)

Recommended Problems

These provide additional practice but are not to be handed in. Textbook Chapter 4 (12th ed.): Exercises 1, 3, 4, 6, 7, 8, 10 .

