Assignment 1: Due Wednesday, January 15 at start of class

Problems to be handed in

Problem 1

1. We consider the 2-state Markov chain $(X_n)_{n\geq 0}$ on $\{0,1\}$, such that $P_{01} = p$ and $P_{10} = q$, where

0 < p, q < 1. Write the transition matrix of $(X_n)_{n \ge 0}$ and draw its transition diagram.

2. Find the stationary distribution Π of $(X_n)_{n\geq 0}$.

3. Show that $P(X_{n+1} = 0) = (1 - p - q)P(X_n = 0) + q$.

4. (bonus) Show that $P(X_n)$ converges to Π when $n \to +\infty$.

Problem 2

We consider the random walk $(X_n)_{n\geq 0}$ on $\{-1, 0, 1\}$ such that at each step, the walker moves from 0 to -1 or 1 with equal probability, and from -1 and 1, the walker moves to 0 only.

1. Draw the transition diagram and write the transition matrix of $(X_n)_{n>0}$.

2. Compute the 2- and 3-step transition matrix. Deduce the *n*-step transition matrix.

3. We modify $(X_n)_{n\geq 0}$ as follows: At each step the walker first decides to move or stay by flipping a fair coin first and follows the same rules as above if the decision is to move. Draw the transition diagram and write the transition matrix of this new Markov chain $(Y_n)_{n\geq 0}$.

4. By induction, prove that the *n*-step transition matrix of $(Y_n)_{n\geq 0}$ is

$$\frac{1}{2} \begin{pmatrix} \frac{2^{n-1}+1}{2^n} & 1 & \frac{2^{n-1}-1}{2^n} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{2^{n-1}-1}{2^n} & 1 & \frac{2^{n-1}+1}{2^n} \end{pmatrix}$$

5. We assume that $(Y_n^2)_{n\geq 0}$ is a Markov chain (on $\{0,1\}$). Find the transition matrix of $(Y_n^2)_{n\geq 0}$ and study its asymptotic behavior (remark: you can use Problem 1).

6. We modify this walk again so at position 1, the walker directly moves back to 0. Draw the transition diagram of the new chain $(Z_n)_{n\geq 0}$. Show that $(Z_n^2)_{n\geq 0}$ is not a Markov chain. (*hint*: Compare $P(Z_2^2 = 0 \mid Z_1^2 = 1)$ and $P(Z_2^2 = 0 \mid Z_1^2 = 1 \mid Z_0^2 = 0)$).

7. (bonus) Let $(X_n)_{n\geq 0}$ be a Markov chain on \mathbb{Z} . Show that if $\forall x, y \ P_{-x,y} = P_{x,y}$, then $(X_n^2)_{n\geq 0}$ is a Markov chain.

Problem 3

We consider an urn with two blue balls and two red balls.

1. What is the probability of picking 2 balls of the same color?

2. We repeat the process of picking 2 balls (and place them back) 4 times. What is the probability of having picked 2 balls of the same color 2 times in a row? (*hint*: Example 4.12 in Ross)

Recommended Problems

These provide additional practice but are not to be handed in. Textbook Chapter 4 (12th ed.): Exercises 1, 3, 4, 6, 7, 8, 10.