Special thanks to the organizing committee.
Coauthors

Hal Kierstead
Arizona State University
Coauthors

Hal Kierstead
Arizona State University

Alexandr Kostochka
University of Illinois at Urbana-Champaign
Coauthors

Hal Kierstead
Arizona State University

Alexandr Kostochka
University of Illinois at Urbana-Champaign

Theodore Molla
Southern Florida University
Coauthors

Hal Kierstead
Arizona State University

Alexandr Kostochka
University of Illinois at Urbana-Champaign

Theodore Molla
Southern Florida University

Michael Santana
Grand Valley State University
Outline

1. Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2. Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3. Equitable Coloring
 - Definition
 - Connection to Cycles
Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.
Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:

- $k = 1$
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:

- $k = 1$: familiar
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:
- $k = 1$: familiar
- Sharpness:
Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:
- $k = 1$: familiar
- Sharpness:

```
k is odd
```

```
k
```

```
k
```

```
k
```

```
2k − 1
```
Corrádi-Hajnal Theorem

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:

- $k = 1$: familiar
- Sharpness:

k is odd

\[
\begin{array}{c}
\text{k is odd} \\
\end{array}
\]
If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:

- $k = 1$: familiar
- Sharpness:
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Examples:

- $k = 1$: familiar
- Sharpness:

k is odd

\[2k - 1\]
1 Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2 Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3 Equitable Coloring
 - Definition
 - Connection to Cycles
Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2k$?
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2k$?

Observation: $k = 1$

If G is a graph where all but one vertex has degree at least 2, then G contains a cycle.
Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2k$?

Observation: $k = 1$

If G is a graph where all but one vertex has degree at least 2, then G contains a cycle.
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2k$?

Observation: $k = 1$

If G is a graph where all but one vertex has degree at least 2, then G contains a cycle.
Corrádi-Hajnal Theorem

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

What if many, but not every, vertex has degree at least $2k$?

Observation: $k = 1$
If G is a graph where all but one vertex has degree at least 2, then G contains a cycle.
Let $V_{\geq c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.
Let $V_{\geq c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.
Let $V_{\geq c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

“Probably not best possible”
Let $V_{\geq c}$ be the number of vertices with degree at least c, etc.

Dirac-Erdős, 1963

If $V_{\geq 2k} - V_{\leq 2k-2} \geq k^2 + 2k - 4$, $k \geq 3$, then G contains k disjoint cycles.

“Probably not best possible”

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$, then G contains k disjoint cycles.
Let \(k \geq 3 \) be an integer and \(G \) be a graph such that \(G \) does not contain two disjoint triangles. If \(V_{\geq 2k} - V_{\leq 2k-2} \geq 2k \), then \(G \) contains \(k \) disjoint cycles.

Question: do we really need to avoid disjoint triangles?
Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles?
Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles?
Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.
Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles?
Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles?
Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles?
Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles? Short answer: yes. Long answer: sometimes.

Let $k \geq 2$ be an integer and G be a graph with $|G| \geq 19k$ and $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$. Then G contains k disjoint cycles.
Dirac-Erdős Type Problems

Kierstead-Kostochka-McConvey, 2016 (link)

Let $k \geq 3$ be an integer and G be a graph such that G does not contain two disjoint triangles. If $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$, then G contains k disjoint cycles.

Question: do we really need to avoid disjoint triangles?

Kierstead-Kostochka-McConvey, 2018 (link)

Let $k \geq 2$ be an integer and G be a graph with $|G| \geq 19k$ and $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$. Then G contains k disjoint cycles.

Open

Characterize graphs G with $V_{\geq 2k} - V_{\leq 2k-2} \geq 2k$ and no k disjoint cycles.
1 Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2 Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3 Equitable Coloring
 - Definition
 - Connection to Cycles
<table>
<thead>
<tr>
<th>Corrádi-Hajnal, 1963</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.</td>
</tr>
</tbody>
</table>
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

\[\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\} \]
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal
If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal

Low degree vertices OK as long as they’re in a clique
Enomoto, Wang

Corrádi-Hajnal, 1963
If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min \{ d(x) + d(y) : xy \notin E(G) \}$$

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal
Low degree vertices OK as long as they’re in a clique
With a little work, implies Dirac-Erdős
Enomoto, Wang

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
Enomoto, Wang

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - $(k - 1)$ disjoint cycles
If \(G \) is a graph on \(n \) vertices with \(n \geq 3k \) and \(\sigma_2(G) \geq 4k - 1 \), then \(G \) contains \(k \) disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - \((k - 1)\) disjoint cycles
 - Remaining graph at least 3 vertices
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)

- Edge-maximal counterexample
 - $(k - 1)$ disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Proof (Enomoto)
- Edge-maximal counterexample
 - $(k - 1)$ disjoint cycles
 - Remaining graph at least 3 vertices
- Minimize number of vertices in cycles
- Maximize longest path in remainder
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Sharpness:
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Sharpness:
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Sharpness:
Independence Number:

Observation:

\[\alpha(G) \geq n - 2k + 1 \Rightarrow \text{no } k \text{ cycles} \]
Independence Number:

Observation:

\[\alpha(G) \geq n - 2k + 1 \Rightarrow \text{no } k \text{ cycles} \]

Enomoto 1998, Wang 1999

If \(G \) is a graph on \(n \) vertices with \(n \geq 3k \) and \(\sigma_2(G) \geq 4k - 1 \), then \(G \) contains \(k \) disjoint cycles.
Independence Number:

Observation:
\[\alpha(G) \geq n - 2k + 1 \implies \text{no } k \text{ cycles} \]

If \(G \) is a graph on \(n \) vertices with \(n \geq 3k \) and \(\sigma_2(G) \geq 4k - 1 \), then \(G \) contains \(k \) disjoint cycles.

Kierstead-Kostochka-Yeager, 2017 (link)
For \(k \geq 4 \), if \(G \) is a graph on \(n \) vertices with \(n \geq 3k + 1 \) and \(\sigma_2(G) \geq 4k - 3 \), then \(G \) contains \(k \) disjoint cycles if and only if \(\alpha(G) \leq n - 2k \).
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$n \geq 3k + 1$
For \(k \geq 4 \), if \(G \) is a graph on \(n \) vertices with \(n \geq 3k + 1 \) and \(\sigma_2(G) \geq 4k - 3 \), then \(G \) contains \(k \) disjoint cycles if and only if \(\alpha(G) \leq n - 2k \).

\[k = 1: \]

[Diagram of two disjoint cycles]
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

$k = 2$:

![Graphs showing the case for $k = 2$.](image-url)
For \(k \geq 4 \), if \(G \) is a graph on \(n \) vertices with \(n \geq 3k + 1 \) and \(\sigma_2(G) \geq 4k - 3 \), then \(G \) contains \(k \) disjoint cycles if and only if \(\alpha(G) \leq n - 2k \).

\[k = 3: \]
For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

\[\sigma_2 = 4k - 4 : \]
Outline

1 Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2 Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3 Equitable Coloring
 - Definition
 - Connection to Cycles
Extending Enomoto-Wang

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min \{d(x) + d(y) : xy \notin E(G)\}$$
Extending Enomoto-Wang

Enomoto 1998, Wang 1999

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

\[
\sigma_2(G) := \min \{d(x) + d(y) : xy \notin E(G)\}
\]

\[
\sigma_t(G) = \min \left\{ \sum_{V \in I} d(V) : I \text{ is an independent set of size } t \right\}
\]
Extending Enomoto-Wang

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

$$\sigma_2(G) := \min \{d(x) + d(y) : xy \notin E(G)\}$$

$$\sigma_t(G) = \min \left\{ \sum_{v \in I} d(V) : I \text{ is an independent set of size } t \right\}$$

Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.
Extending Enomoto-Wang

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.</td>
</tr>
</tbody>
</table>

$$\sigma_2(G) := \min \{ d(x) + d(y) : xy \notin E(G) \}$$

$$\sigma_t(G) = \min \left\{ \sum_{v \in I} d(V) : I \text{ is an independent set of size } t \right\}$$

<table>
<thead>
<tr>
<th>Conjecture: Gould, Hirohata, Keller 2018 (link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.</td>
</tr>
</tbody>
</table>

$t = 1$: Corrádi-Hajnal

$t = 2$: Enomoto-Wang
Extending Enomoto-Wang

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

\[
\sigma_2(G) := \min \{ d(x) + d(y) : xy \notin E(G) \}
\]

\[
\sigma_t(G) = \min \left\{ \sum_{v \in I} d(V) : I \text{ is an independent set of size } t \right\}
\]

Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

$t = 1$: Corrádi-Hajnal
$t = 2$: Enomoto-Wang
$t = 3$: Fujita, Matsumura, Tsugaki, Yamashita 2006 (link)
$t = 4$: proved in paper as evidence for conjecture
Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.
Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.

Ma, Yan 2018+ (link)

Let G be a graph with $|G| \geq (2t + 1)k$. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.
Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.

Ma, Yan 2018+ (link)

Let G be a graph with $|G| \geq (2t + 1)k$. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Proof

In an edge-maximal counterexample, choose $k - 1$ disjoint cycles such that

- number of vertices in cycles is minimal, and
- number of connected components in remaining graph is minimal.
Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.

Ma, Yan 2018+ (link)

Let G be a graph with $|G| \geq (2t + 1)k$. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Degree-sum condition is sharp:
Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.

Ma, Yan 2018+ (link)

Let G be a graph with $|G| \geq (2t + 1)k$. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Degree-sum condition is sharp:
Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.

Ma, Yan 2018+ (link)

Let G be a graph with $|G| \geq (2t + 1)k$. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Degree-sum condition is sharp:
Ma, Yan

Conjecture: Gould, Hirohata, Keller 2018 (link)

Let G be a graph of sufficiently large order. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 1$, then G contains k disjoint cycles.

True for $t \leq 4$.

Ma, Yan 2018+ (link)

Let G be a graph with $|G| \geq (2t + 1)k$. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.

Open

What is the best possible bound on $|G|$ in the Ma-Yan Theorem?
Can we characterize graphs G with $\sigma_t(G) \geq 2kt - t + 1$ but no k disjoint cycles?
Outline

1. **Disjoint Cycles**
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - **Connectivity**
 - Neighborhood Union

2. **Chorded Cycles**
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3. **Equitable Coloring**
 - Definition
 - Connection to Cycles
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963 (link)

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963 (link)

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

\[G \text{ is } (2k - 1) \text{ connected} \]
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963 (link)

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Observation:

\[G \text{ is } (2k - 1) \text{ connected} \implies \delta(G) \geq 2k - 1 \]
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963 (link)

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Observation:

\(G\) is \((2k - 1)\)-connected \(\Rightarrow \delta(G) \geq 2k - 1 \Rightarrow \sigma_2(G) \geq 4k - 2\)
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963 (link)

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Observation:

\[G \text{ is } (2k - 1) \text{ connected} \implies \delta(G) \geq 2k - 1 \implies \sigma_2(G) \geq 4k - 2 \]

KKY: Holds for \(\sigma_2(G) \geq 4k - 3\)
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963 (link)

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Answer to Dirac’s Question for Simple Graphs (KKY 2017)

Let \(k \geq 2\). Every graph \(G\) with

\((i)\) \(|G| \geq 3k\) and

\((ii)\) \(\delta(G) \geq 2k - 1\)

contains \(k\) disjoint cycles if and only if

- if \(k\) is odd and \(|G| = 3k\), then \(G \neq 2K_k \lor \overline{K_k}\), and
- \(\alpha(G) \leq |G| - 2k\), and
- if \(k = 2\) then \(G\) is not a wheel.

\[2k - 1\]
Dirac: $(2k - 1)$-connected without k disjoint cycles

Dirac, 1963 (link)

What $(2k - 1)$-connected graphs do not have k disjoint cycles?

Answer to Dirac’s Question for Simple Graphs (KKY 2017)

Let $k \geq 2$. Every graph G with (i) $|G| \geq 3k$ and (ii) $\delta(G) \geq 2k - 1$ contains k disjoint cycles if and only if

- if k is odd and $|G| = 3k$, then $G \neq 2K_k \lor K_k$, and
- $\alpha(G) \leq |G| - 2k$, and
- if $k = 2$ then G is not a wheel.

Further:

characterization for multigraphs
Simple Graphs \rightarrow Multigraphs

Idea:

- Take all 1-vertex cycles
Idea:

- Take all 1-vertex cycles
Simple Graphs → Multigraphs

Idea:

- Take all 1-vertex cycles
- Take as many 2-vertex cycles as possible (maximum matching)
Simple Graphs \rightarrow Multigraphs

Idea:

- Take all 1-vertex cycles
- Take as many 2-vertex cycles as possible (maximum matching)
Simple Graphs → Multigraphs

Idea:

- Take all 1-vertex cycles
- Take as many 2-vertex cycles as possible (maximum matching)
- What’s left is a simple graph
$(2k - 1)$-connected multigraphs with no k disjoint cycles

Answer to Dirac's Question for multigraphs: Kierstead-Kostochka-Yeager 2015 (link)

Let $k \geq 2$ and $n \geq k$. Let G be an n-vertex graph with simple degree at least $2k - 1$ and no loops. Let F be the simple graph induced by the strong edges of G, $\alpha' = \alpha'(F)$, and $k' = k - \alpha'$. Then G does not contain k disjoint cycles if and only if one of the following holds:

- $n + \alpha' < 3k$;
- $|F| = 2\alpha'$ (i.e., F has a perfect matching) and either (i) k' is odd and $G - F = Y_{k',k'}$, or (ii) $k' = 2 < k$ and $G - F$ is a wheel with 5 spokes;
- G is extremal and either (i) some big set is not incident to any strong edge, or (ii) for some two distinct big sets I_j and $I_{j'}$, all strong edges intersecting $I_j \cup I_{j'}$ have a common vertex outside of $I_j \cup I_{j'}$;
- $n = 2\alpha' + 3k'$, k' is odd, and F has a superstar $S = \{v_0, \ldots, v_s\}$ with center v_0 such that either (i) $G - (F - S + v_0) = Y_{k'+1,k'}$, or (ii) $s = 2$, $v_1v_2 \in E(G)$, $G - F = Y_{k'-1,k'}$ and G has no edges between $\{v_1, v_2\}$ and the set X_0 in $G - F$;
- $k = 2$ and G is a wheel, where some spokes could be strong edges;
- $k' = 2$, $|F| = 2\alpha' + 1 = n - 5$, and $G - F = C_5$.

86 / 180
k' odd, F has a perfect matching

Example: $k = 8$, $\alpha' = 3$, $k' = 5$.
Big independent set, incident to no multiple edges

2^{k-1}
Wheel, with possibly some spokes multiple

Example: \(k = 2 \)
Dirac: $(2k - 1)$-connected without k disjoint cycles

Dirac, 1963 (link)
What $(2k - 1)$-connected multigraphs do not have k disjoint cycles?

Kierstead-Kostochka-Yeager 2015 (link)
Characterization of multigraphs without k disjoint cycles that have minimum simple degree at least $2k - 1$. That is, the underlying simple graph G has $\delta(G) \geq 2k - 1$.

Open
Do the other results in this talk generalize nicely to multigraphs?
Dirac: $(2k - 1)$-connected without k disjoint cycles

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirac, 1963 (link)</td>
<td>What $(2k - 1)$-connected multigraphs do not have k disjoint cycles?</td>
</tr>
<tr>
<td>Kierstead-Kostochka-Yeager 2015 (link)</td>
<td>Characterization of multigraphs without k disjoint cycles that have minimum simple degree at least $2k - 1$. That is, the underlying simple graph G has $\delta(G) \geq 2k - 1$.</td>
</tr>
<tr>
<td>Kierstead-Kostochka-Molla-Yager 2018+ (link)</td>
<td>Characterization of multigraphs without k disjoint cycles that have minimum simple degree sum of nonadjacent vertices at least $4k - 3$. That is, the underlying simple graph G has $\sigma_2(G) \geq 4k - 3$.</td>
</tr>
</tbody>
</table>
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963 (link)

What \((2k - 1)\)-connected multigraphs do not have \(k\) disjoint cycles?

Kierstead-Kostochka-Yeager 2015 (link)

Characterization of multigraphs without \(k\) disjoint cycles that have minimum simple degree at least \(2k - 1\). That is, the underlying simple graph \(G\) has \(\delta(G) \geq 2k - 1\).

Kierstead-Kostochka-Molla-Yager 2018+ (link)

Characterization of multigraphs without \(k\) disjoint cycles that have minimum simple degree sum of nonadjacent vertices at least \(4k - 3\). That is, the underlying simple graph \(G\) has \(\sigma_2(G) \geq 4k - 3\).

Open

Do the other results in this talk generalize nicely to multigraphs?
Outline

1. Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2. Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3. Equitable Coloring
 - Definition
 - Connection to Cycles
If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.
If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.
Faudree-Gould, 2005 (link)

If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

$$d(x) + d(y) = 6$$
If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

$$d(x) + d(y) = 6$$

$$|N(x) \cup N(y)| = 4$$
If \(G \) has \(n \geq 3k \) vertices and \(|N(x) \cup N(y)| \geq 3k \) for all nonadjacent pairs of vertices \(x, y \), then \(G \) contains \(k \) disjoint cycles.

Neither stronger nor weaker than Corrádi-Hajnal.

- If \(\delta(G) = 2k \), then \(\min_{xy \notin E(G)} \{|N(x) \cup N(y)|\} \geq 2k \).
- If \(|N(x) \cup N(y)| \geq 3k \), then \(\delta(G) \geq 0 \).
If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Proof

In an edge-maximal counterexample, choose $k - 1$ disjoint cycles such that

- number of vertices in cycles is minimal, and
- number of connected components in remaining graph is minimal
Neighborhood Union

Faudree-Gould, 2005 (link)

If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Sharpness:

K_{3k-4}

K_5
If \(G \) has \(n \geq 3k \) vertices and \(|N(x) \cup N(y)| \geq 3k \) for all nonadjacent pairs of vertices \(x, y \), then \(G \) contains \(k \) disjoint cycles.

Let \(G \) be a graph on \(n > 30k \) vertices such that for any nonadjacent \(x, y \in V(G) \), \(|N(x) \cup N(y)| \geq 2k + 1 \). Then \(G \) contains \(k \) disjoint cycles.
If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Let G be a graph on $n > 30k$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 2k + 1$. Then G contains k disjoint cycles.

Sharpness of $|N(x) \cup N(y)| \geq 2k + 1$:

$$k = 2$$
Faudree-Gould, 2005 (link)

If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG’05)

Let G be a graph on $n > 30k$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 2k + 1$. Then G contains k disjoint cycles.

Sharpness of $|N(x) \cup N(y)| \geq 2k + 1$:

$k = 2$

$|N(x) \cup N(y)| \geq 4 = 2k$
Faudree-Gould, 2005 (link)

If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Gould-Hirohata-Horn, 2013 (link) (conjecture from FG’05)

Let G be a graph on $n > 30k$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 2k + 1$. Then G contains k disjoint cycles.

Sharpness of $|N(x) \cup N(y)| \geq 2k + 1$:

$k = 2$

$|N(x) \cup N(y)| \geq 4 = 2k$

No two disjoint cycles
If G has $n \geq 3k$ vertices and $|N(x) \cup N(y)| \geq 3k$ for all nonadjacent pairs of vertices x, y, then G contains k disjoint cycles.

Let G be a graph on $n > 30k$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 2k + 1$. Then G contains k disjoint cycles.

Perhaps $n > 30k$ is not best possible—can be reduced to $4k$?
Outline

1. Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2. Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3. Equitable Coloring
 - Definition
 - Connection to Cycles
If G is a graph on $n \geq 4k$ vertices with $\delta(G) \geq 3k$, then G contains k disjoint chorded cycles.
If G is a graph on $n \geq 4k$ vertices with $\delta(G) \geq 3k$, then G contains k disjoint chorded cycles.

$k = 1$:
If G is a graph on $n \geq 4k$ vertices with $\delta(G) \geq 3k$, then G contains k disjoint chorded cycles.

$k = 1:$
If G is a graph on $n \geq 4k$ vertices with $\delta(G) \geq 3k$, then G contains k disjoint chorded cycles.

$k = 1$:
If G is a graph on $n \geq 4k$ vertices with $\delta(G) \geq 3k$, then G contains k disjoint chorded cycles.

Sharpness:
If G is a graph on $n \geq 4k$ vertices with $\delta(G) \geq 3k$, then G contains k disjoint chorded cycles.

Sharpness:
If G is a graph on $n \geq 4k$ vertices with $\delta(G) \geq 3k$, then G contains k disjoint chorded cycles.

Proof (2 pages!)

In an edge-maximal counterexample, choose $k - 1$ disjoint cycles such that

- number of vertices in cycles is minimal, and
- longest path in the remaining graph is maximal.
Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)

If G is a graph on $n \geq 3r + 4s$ vertices with $\delta(G) \geq 2r + 3s$, then G contains $r + s$ cycles, s of them chorded.

$s = 0$: Corrádi-Hajnal

$r = 0$: Finkel
Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)

If G is a graph on $n \geq 3r + 4s$ vertices with $\delta(G) \geq 2r + 3s$, then G contains $r + s$ cycles, s of them chorded.

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \geq 1$, and let G be a graph on $n \geq 3r + 4s$ vertices. If $\sigma_2(G) \geq 4r + 6s - 1$, then G contains $r + s$ disjoint cycles, s of them chorded cycles.
Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)

If G is a graph on $n \geq 3r + 4s$ vertices with $\delta(G) \geq 2r + 3s$, then G contains $r + s$ cycles, s of them chorded.

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \geq 1$, and let G be a graph on $n \geq 3r + 4s$ vertices. If $\sigma_2(G) \geq 4r + 6s - 1$, then G contains $r + s$ disjoint cycles, s of them chorded cycles.

Sharpness:

\[
\begin{align*}
2r + 3s - 1 \\
n - 2r - 3s + 1
\end{align*}
\]
Conjecture: Bialostocki-Finkel-Gyárfás, 2008 (link)

If G is a graph on $n \geq 3r + 4s$ vertices with $\delta(G) \geq 2r + 3s$, then G contains $r + s$ cycles, s of them chorded.

Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \geq 1$, and let G be a graph on $n \geq 3r + 4s$ vertices. If $\sigma_2(G) \geq 4r + 6s - 1$, then G contains $r + s$ disjoint cycles, s of them chorded cycles.

Sharpness:

\[
2r + 3s - 1
\]

\[
n - 2r - 3s + 1
\]
Chiba-Fujita-Gao-Li, 2010 (link)

Let \(r \) and \(s \) be integers with \(r + s \geq 1 \), and let \(G \) be a graph on \(n \geq 3r + 4s \) vertices. If \(\sigma_2(G) \geq 4r + 6s - 1 \), then \(G \) contains \(r + s \) disjoint cycles, \(s \) of them chorded cycles.

Corollary

Let \(G \) be a graph on \(n \geq 4s \) vertices. If \(\sigma_2(G) \geq 6s - 1 \), then \(G \) contains \(s \) disjoint chorded cycles.
Chiba-Fujita-Gao-Li, 2010 (link)

Let r and s be integers with $r + s \geq 1$, and let G be a graph on $n \geq 3r + 4s$ vertices. If $\sigma_2(G) \geq 4r + 6s - 1$, then G contains $r + s$ disjoint cycles, s of them chorded cycles.

Corollary

Let G be a graph on $n \geq 4s$ vertices. If $\sigma_2(G) \geq 6s - 1$, then G contains s disjoint chorded cycles.

Molla-Santana-Yeager, 2017 (link)

For $s \geq 2$, let G be a graph on $n \geq 4s$ vertices. If $\sigma_2(G) \geq 6s - 2$, then G does not contain s disjoint chorded cycles if and only if $G \in \{K_{3s-1,n-3s+1}, K_{3s-2,3s-2,1}\}$.
Let r and s be integers with $r + s \geq 1$, and let G be a graph on $n \geq 3r + 4s$ vertices. If $\sigma_2(G) \geq 4r + 6s - 1$, then G contains $r + s$ disjoint cycles, s of them chorded cycles.

Corollary

Let G be a graph on $n \geq 4s$ vertices. If $\sigma_2(G) \geq 6s - 1$, then G contains s disjoint chorded cycles.
Chorded + Unchorded Cycles: How Sharp Is It?

Corollary: If G is a graph on $n \geq 3r + 4s$ vertices with $\delta(G) \geq 2r + 3s$, then G contains $r + s$ cycles, s of them chorded.
Chorded + Unchorded Cycles: How Sharp Is It?

Chiba-Fujita-Gao-Li, 2010 (link)

Corollary: If G is a graph on $n \geq 3r + 4s$ vertices with $\delta(G) \geq 2r + 3s$, then G contains $r + s$ cycles, s of them chorded.

Molla-Santana-Yeager, 2018+

Let r and s be integers with $r + s \geq 1$, and let G be a graph on $n \geq 3r + 4s$ vertices. If $\delta(G) \geq 2r + 3s - 1$, then G fails to contain a collection of $r + s$ disjoint cycles, s of them chorded, if and only if G is one of the following:

$2r + 3s - 1$

$n - 2r - 3s + 1$

$2r + 3s - 2$

$2r + 3s - 2$
Corollary: If G is a graph on $n \geq 3r + 4s$ vertices with $\delta(G) \geq 2r + 3s$, then G contains $r + s$ cycles, s of them chorded.

Molla-Santana-Yeager, 2018+

Let r and s be integers with $r + s \geq 1$, and let G be a graph on $n \geq 3r + 4s$ vertices. If $\delta(G) \geq 2r + 3s - 1$, then G fails to contain a collection of $r + s$ disjoint cycles, s of them chorded, if and only if G is one of the following:

$s = 1$:

- $r + 1$
- $r + 2$
- $r + 1$

- K_{t+1}
- $2r - t + 1$
- $2r - t + 1$
<table>
<thead>
<tr>
<th>Chiba-Fujita-Gao-Li, 2010 (link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let r and s be integers with $r + s \geq 1$, and let G be a graph on $n \geq 3r + 4s$ vertices. If $\sigma_2(G) \geq 4r + 6s - 1$, then G contains $r + s$ disjoint cycles, s of them chorded cycles.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molla-Santana-Yeager, 2017 (link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For $s \geq 2$, let G be a graph $n \geq 4s$ vertices. If $\sigma_2(G) \geq 6s - 2$, then G does not contain s disjoint chorded cycles if and only if $G \in {K_{3k-1,n-3k+1}, K_{3k-2,3k-2,1}}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>We know what happens if $\sigma_2(G) \geq 6s - 2$; what if $\sigma_2(G) \geq 6s - 3$?</td>
</tr>
</tbody>
</table>
Let G be a graph with $|G| \geq (2t + 1)k$. If $\sigma_t(G) \geq 2kt - t + 1$ for any two integers $k \geq 2$ and $t \geq 5$, then G contains k disjoint cycles.
Outline

1 Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2 Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3 Equitable Coloring
 - Definition
 - Connection to Cycles
Let r, s be nonnegative integers, and let G be a graph on at least $3r + 4s$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 3r + 4s + 1$. Then G contains $r + s$ disjoint cycles, s of them chorded.
Let r, s be nonnegative integers, and let G be a graph on at least $3r + 4s$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 3r + 4s + 1$. Then G contains $r + s$ disjoint cycles, s of them chorded.

Sharpness ($r = 0$):
Qiao, 2012 (link)

Let \(r, s \) be nonnegative integers, and let \(G \) be a graph on at least \(3r + 4s \) vertices such that for any nonadjacent \(x, y \in V(G) \),
\[
|N(x) \cup N(y)| \geq 3r + 4s + 1.
\]
Then \(G \) contains \(r + s \) disjoint cycles, \(s \) of them chorded.

Gould-Hirohata-Horn, 2013 (link)

Let \(G \) be a graph on at least \(4s \) vertices such that for any nonadjacent \(x, y \in V(G) \),
\[
|N(x) \cup N(y)| \geq 4s + 1.
\]
Then \(G \) contains \(s \) disjoint chorded cycles.
Neighborhood-Union Conditions

Qiao, 2012 (link)
Let r, s be nonnegative integers, and let G be a graph on at least $3r + 4s$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 3r + 4s + 1$. Then G contains $r + s$ disjoint cycles, s of them chorded.

Gould-Hirohata-Horn, 2013 (link)
Let G be a graph on at least $4s$ vertices such that for any nonadjacent $x, y \in V(G)$, $|N(x) \cup N(y)| \geq 4s + 1$. Then G contains s disjoint chorded cycles.

Open:
Can this be improved for large n, like for (not-necessarily-chorded) cycles?
Outline

1 Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2 Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3 Equitable Coloring
 - Definition
 - Connection to Cycles
Multiply Chorded Cycles

We define \(f(c) \) to be the number of chords in \(K_{c+1} \), viewed as a cycle. That is, \(f(c) = \frac{(c+1)(c-2)}{2} \).

\[
\begin{align*}
 f(2) &= 0 \\
 f(3) &= 2 \\
 f(4) &= 5
\end{align*}
\]
Multiply Chorded Cycles

We define $f(c)$ to be the number of chords in K_{c+1}, viewed as a cycle. That is, $f(c) = \frac{(c+1)(c-2)}{2}$.

$$ f(2) = 0 \quad f(3) = 2 \quad f(4) = 5 $$

Conjecture: Gould-Horn-Magnant, 2014

If $|G| \geq k(c + 1)$ and $\delta(G) \geq ck$, then G contains k disjoint cycles, each with at least $f(c)$ chords.
We define \(f(c) \) to be the number of chords in \(K_{c+1} \), viewed as a cycle. That is, \(f(c) = \frac{(c+1)(c-2)}{2} \).

\[
\begin{align*}
\text{f(2)} &= 0 \\
\text{f(3)} &= 2 \\
\text{f(4)} &= 5
\end{align*}
\]

Conjecture: Gould-Horn-Magnant, 2014

If \(|G| \geq k(c + 1) \) and \(\delta(G) \geq ck \), then \(G \) contains \(k \) disjoint cycles, each with at least \(f(c) \) chords.

If \(c = 2 \), then \(f(c) = 0 \), so the conjecture states:

\text{If } |G| \geq 3k \text{ and } \delta(G) \geq 2k, \text{ then } G \text{ contains } k \text{ disjoint cycles}
We define $f(c)$ to be the number of chords in K_{c+1}, viewed as a cycle. That is, $f(c) = \frac{(c+1)(c-2)}{2}$.

Conjecture: Gould-Horn-Magnant, 2014

If $|G| \geq k(c + 1)$ and $\delta(G) \geq ck$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

If $c = 2$, then $f(c) = 0$, so the conjecture states:

If $|G| \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles

Corrádi-Hajnal
Conjecture: (GHM 2014)

If $|G| \geq k(c + 1)$ and $\delta(G) \geq ck$, then G contains k disjoint cycles, each with at least $f(c)$ chords.
Conjecture: (GHM 2014)

If \(|G| \geq k(c + 1)\) and \(\delta(G) \geq ck\), then \(G\) contains \(k\) disjoint cycles, each with at least \(f(c)\) chords.

If \(c = 3\), then \(f(c) = 2\), so the conjecture states:

If \(|G| \geq 4k\) and \(\delta(G) \geq 3k\), then \(G\) contains \(k\) disjoint cycles, each with at least 2 chords.
Conjecture: (GHM 2014)

If $|G| \geq k(c + 1)$ and $\delta(G) \geq ck$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

If $c = 3$, then $f(c) = 2$, so the conjecture states:

If $|G| \geq 4k$ and $\delta(G) \geq 3k$, then G contains k disjoint cycles, each with at least 2 chords.

Qiao-Zhang, 2010 (link)

Let G be a graph on $n \geq 4k$ vertices with $\delta(G) \geq \lceil 7k/2 \rceil$. Then G contains k disjoint, doubly chorded cycles.

Gould-Hirohata-Horn, 2015 (link)

If G is a graph on $n \geq 6k$ vertices with $\delta(G) \geq 3k$, then G contains k vertex-disjoint doubly chorded cycles.
Conjecture: (GHM 2014)
If $|G| \geq k(c + 1)$ and $\delta(G) \geq kc$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

Chiba-Lichiardopol, 2017 (link)
Let k and c be integers, $c \geq 2$, $k \geq 1$. If G is a graph with $\delta(G) \geq k(c + 1) - 1$, then G contains k disjoint cycles, each with at least $f(c)$ chords.
Multiply Chorded Cycles

Conjecture: (GHM 2014)

If $|G| \geq k(c + 1)$ and $\delta(G) \geq kc$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

Chiba-Lichiardopol, 2017 (link)

Let k and c be integers, $c \geq 2$, $k \geq 1$. If G is a graph with $\delta(G) \geq k(c + 1) - 1$, then G contains k disjoint cycles, each with at least $f(c)$ chords.

Open

Is $\delta(G) \geq k(c + 1) - 1$ the most fitting bound?
Outline

1 Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2 Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3 Equitable Coloring
 - Definition
 - Connection to Cycles
An *equitable k-coloring* of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.
Equitable Coloring

Definition

An *equitable k-coloring* of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.
Equitable Coloring

Definition

An *equitable* k-*coloring* of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.
Equitable Coloring

Definition

An *equitable* k-coloring of a graph G is a proper coloring of $V(G)$ such that any two color classes differ in size by at most one.
Outline

1. Disjoint Cycles
 - Corrádi-Hajnal
 - Tolerance for some low-degree vertices
 - Ore condition (minimum degree-sum of nonadjacent vertices)
 - Generalized Degree-Sum Conditions
 - Connectivity
 - Neighborhood Union

2. Chorded Cycles
 - Degree conditions
 - Neighborhood Union
 - Multiply Chorded Cycles

3. Equitable Coloring
 - Definition
 - Connection to Cycles
If G has $n = 3k$ vertices, then G has an equitable k-coloring iff \overline{G} has k disjoint cycles (all triangles).
If G has $n = 3k$ vertices, then G has an equitable k-coloring iff \overline{G} has k disjoint cycles (all triangles).
Equitable Coloring and Cycles

$n = 3k$

If G has $n = 3k$ vertices, then G has an equitable k-coloring iff \overline{G} has k disjoint cycles (all triangles).
Equitable Coloring and Cycles

$n = 3k$
If G has $n = 3k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint cycles (all triangles).

$n = 4k$
If G has $n = 4k$ vertices, then G has an equitable k-coloring iff \bar{G} has k disjoint, doubly chorded cycles (each with four vertices).
Equitable Coloring and Cycles

\[n = 3k \]

If \(G \) has \(n = 3k \) vertices, then \(G \) has an equitable \(k \)-coloring iff \(\overline{G} \) has \(k \) disjoint cycles (all triangles).

\[n = 4k \]

If \(G \) has \(n = 4k \) vertices, then \(G \) has an equitable \(k \)-coloring iff \(\overline{G} \) has \(k \) disjoint, doubly chorded cycles (each with four vertices).
$n = 3k$

If G has $n = 3k$ vertices, then G has an equitable k-coloring iff \overline{G} has k disjoint cycles (all triangles).

$n = 4k$

If G has $n = 4k$ vertices, then G has an equitable k-coloring iff \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).
Equitable Coloring and Cycles

$n = 3k$

If G has $n = 3k$ vertices, then G has an equitable k-coloring iff \overline{G} has k disjoint cycles (all triangles).

$n = 4k$

If G has $n = 4k$ vertices, then G has an equitable k-coloring iff \overline{G} has k disjoint, doubly chorded cycles (each with four vertices).

What’s Really Going On

- If G has $3k$ vertices and k cycles, those cycles are cliques
- If G has $4k$ vertices and k doubly chorded cycles, those cycles are cliques
- The complement of a clique is an independent set (color class)
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

(minimum degree sum of nonadjacent vertices)

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

(minimum degree sum of nonadjacent vertices)

Kierstead-Kostochka, 2008 (link)

If G is a graph such that $d(x) + d(y) \leq 2k - 1$ for every edge xy, then G has an equitable k-coloring.

(maximum degree sum of adjacent vertices)
Equitable Coloring and Cycles

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

(minimum degree sum of nonadjacent vertices)

Kierstead-Kostochka, 2008 (link)

If G is a graph such that $d(x) + d(y) \leq 2k - 1$ for every edge xy, then G has an equitable k-coloring.

(maximum degree sum of adjacent vertices)

$n = 3k$

Equivalent when $n = 3k$: $2(3k-1)-(2k-1)=4k-1$
If $k \geq \Delta(G) + 1$, then G is equitably k-colorable.

Chen-Lih-Wu

Conjecture, 1994 (link)

A connected graph G is equitably $\Delta(G)$ colorable if G is different from K_{m}, $C_{2m} + 1$ and $K_{2m} + 1$ for every $m \geq 1$.

Many special cases proved; still open in general.
Hajnal-Szemerédi, 1970

If $k \geq \Delta(G) + 1$, then G is equitably k-colorable.
If $k \geq \Delta(G) + 1$, then G is equitably k-colorable.

$\Delta(G) = 3$
Hajnal-Szemerédi, 1970

If \(k \geq \Delta(G) + 1 \), then \(G \) is equitably \(k \)-colorable.

\[\Delta(G) = 3 \]
Hajnal-Szemerédi, 1970

If $k \geq \Delta(G) + 1$, then G is equitably k-colorable.

$\Delta(G) = 3$
If $k \geq \Delta(G) + 1$, then G is equitably k-colorable.

A connected graph G is equitably $\Delta(G)$ colorable if G is different from K_m, C_{2m+1} and $K_{2m+1,2m+1}$ for every $m \geq 1$.

$\Delta(G) = 3$
Hajnal-Szemerédi, 1970

If \(k \geq \Delta(G) + 1 \), then \(G \) is equitably \(k \)-colorable.

\[\Delta(G) = 3 \]

Chen-Lih-Wu Conjecture, 1994 (link)

A connected graph \(G \) is equitably \(\Delta(G) \) colorable if \(G \) is different from \(K_m, C_{2m+1} \) and \(K_{2m+1,2m+1} \) for every \(m \geq 1 \).

Many special cases proved; still open in general
Chen-Lih-Wu Conjecture Re-stated

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.
Chen-Lih-Wu **Conjecture** Re-stated

If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.

Kierstead-Kostochka-Molla-Yeager, 2016 (link)

If G is a $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.
Ore Conditions

<table>
<thead>
<tr>
<th>Chen-Lih-Wu Conjecture Re-stated</th>
</tr>
</thead>
<tbody>
<tr>
<td>If $\chi(G), \Delta(G) \leq k$ and $K_{k,k} \not\subseteq G$, then G is equitably k-colorable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kierstead-Kostochka-Molla-Yeager, 2016 (link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is a $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equivalent—consider the complement of G</th>
</tr>
</thead>
<tbody>
<tr>
<td>If G is a graph on $3k$ vertices with $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions.</td>
</tr>
</tbody>
</table>
Ore Conditions

Kierstead-Kostochka-Molla-Yeager, 2016 (link)

If G is a $3k$-vertex graph such that for each edge xy, $d(x) + d(y) \leq 2k + 1$, then G is equitably k-colorable, or is one of several exceptions.

Equivalent—consider the complement of G

If G is a graph on $3k$ vertices with $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions.

KKY, 2017

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.

Exceptions

$|G| = 3k$, $\chi(G) \leq k$, $\sigma_2(G) \geq 4k - 3$, no k disjoint cycles.

- $k = 3$

Equitable coloring:

Cycles:
Exceptions
$|G| = 3k$, $\chi(\overline{G}) \leq k$, $\sigma_2(G) \geq 4k - 3$, no k disjoint cycles.

- **Equitable coloring:**

\[2k - c \]

\[c \]

Cycles:
Exceptions

$|G| = 3k$, $\chi(G) \leq k$, $\sigma_2(G) \geq 4k - 3$, no k disjoint cycles.

- **Equitable coloring:**

- **Cycles:**
Proof of KKMY 2016
Slides available at:
http://www.math.ubc.ca/~elyse/Talk_Sendai18.pdf

Thanks!