Disjoint Cycles and Equitable Coloring

H. Kierstead A. Kostochka T. Molla E. Yeager*

yeager2@illinois.edu

AMS-MAA Joint Mathematics Meetings
San Antonio, Texas

MAA General Contributed Paper Session: Research in Graph Theory

12 January 2015
Disjoint Cycles
Corrádi-Hajnal Theorem

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Sharpness:
Corrádi-Hajnal Theorem

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Sharpness:

\[\begin{align*}
 & \begin{array}{c}
 k \\
 k \\
 k \\
 \end{array} \\
 \text{2k - 1}
\end{align*} \]
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.
Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Minimum degree sum of nonadjacent vertices:

$$\sigma_2(G) := \min \{ d(x) + d(y) : xy \not\in E(G) \}$$

That is, low vertices form a clique.
Enomoto, Wang

Corrádi-Hajnal, 1963

If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Minimum degree sum of nonadjacent vertices:

$$\sigma_2(G) := \min \{d(x) + d(y) : xy \not\in E(G)\}$$

That is, low vertices form a clique.

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.
Enomoto, Wang

Corrádi-Hajnal, 1963
If G is a graph on n vertices with $n \geq 3k$ and $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Minimum degree sum of nonadjacent vertices:

$$\sigma_2(G) := \min\{d(x) + d(y) : xy \notin E(G)\}$$

That is, low vertices form a clique.

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Implies Corrádi-Hajnal
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Sharpness:
If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
Dirac’s Question
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Answer to Dirac's Question for Simple Graphs

(Kierstead-Kostochka-Yeager, 2015+)

Let \(k \geq 2\). Every graph \(G\) with (i) \(|G| \geq 3k\) and (ii) \(\delta(G) \geq 2k - 1\) contains \(k\) disjoint cycles if and only if \(\alpha(G) \leq |G| - 2k\), and if \(k\) is odd and \(|G| = 3k\), then \(G \neq 2K_k \cup K_k\), and if \(k = 2\) then \(G\) is not a wheel.

Further:

Characterization for multigraphs

Kierstead-Kostochka-Yeager

Combinatorica, to appear.

KKMY (ASU, UIUC) Disjoint Cycles 12 Jan 2015 8 / 13
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Answer to Dirac’s Question for Simple Graphs

(Kierstead-Kostochka-Yeager, 2015+)

Let \(k \geq 2\). Every graph \(G\) with (i) \(|G| \geq 3k\) and (ii) \(\delta(G) \geq 2k - 1\) contains \(k\) disjoint cycles if and only if

- \(\alpha(G) \leq |G| - 2k\), and
- if \(k\) is odd and \(|G| = 3k\), then \(G \neq 2K_k \lor K_k\), and
- if \(k = 2\) then \(G\) is not a wheel.
Dirac: \((2k - 1)\)-connected without \(k\) disjoint cycles

Dirac, 1963

What \((2k - 1)\)-connected graphs do not have \(k\) disjoint cycles?

Answer to Dirac’s Question for Simple Graphs
(Kierstead-Kostochka-Yeager, 2015+)

Let \(k \geq 2\). Every graph \(G\) with (i) \(|G| \geq 3k\) and (ii) \(\delta(G) \geq 2k - 1\) contains \(k\) disjoint cycles if and only if

- \(\alpha(G) \leq |G| - 2k\), and
- if \(k\) is odd and \(|G| = 3k\), then \(G \neq 2K_k \lor \overline{K}_k\), and
- if \(k = 2\) then \(G\) is not a wheel.

Further:

Characterization for *multigraphs*
The Case $n = 3k$

If G is a graph on n vertices with $n \geq 3k$ and $\sigma_2(G) \geq 4k - 1$, then G contains k disjoint cycles.

Kierstead-Kostochka-Yeager, 2015+

For $k \geq 4$, if G is a graph on n vertices with $n \geq 3k + 1$ and $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles if and only if $\alpha(G) \leq n - 2k$.
If G is a graph on $3k$ vertices with $\sigma_2(G) \geq 4k - 3$, then G contains k disjoint cycles, or is one of several exceptions, or \overline{G} is not k-colorable.
Chen-Lih-Wu Conjecture

Hajnal-Szemerédi, 1970

If \(k \geq \Delta(G) + 1 \), then \(G \) is equitably \(k \)-colorable.
Hajnal-Szemerédi, 1970
If \(k \geq \Delta(G) + 1 \), then \(G \) is equitably \(k \)-colorable.

Chen-Lih-Wu Conjecture
If \(\chi(G), \Delta(G) \leq k \), and if \(k \) is odd \(K_{k,k} \not\subseteq G \), then \(G \) is equitably \(k \)-colorable.
Chen-Lih-Wu Conjecture

Hajnal-Szemerédi, 1970
If \(k \geq \Delta(G) + 1 \), then \(G \) is equitably \(k \)-colorable.

Chen-Lih-Wu Conjecture
If \(\chi(G), \Delta(G) \leq k \), and if \(k \) is odd \(K_{k,k} \not\subseteq G \), then \(G \) is equitably \(k \)-colorable.

Kierstead-Kostochka-Molla-Yeager, 2015+
If \(G \) is a \(k \)-colorable \(3k \)-vertex graph such that for each edge \(xy \), \(d(x) + d(y) \leq 2k + 1 \), then \(G \) is equitably \(k \)-colorable, or is one of several exceptions.
Thanks for Listening!