\[4 \times \left(1 + (-1)^n (2n-1) \right) \]

Suppose \(n \) even. Then \(\exists a \in \mathbb{Z} \) s.t. \(n = 2a \)

\[
1 + (-1)^n (2n-1) = 1 + 2n - 1 = 2n = 2 \cdot 2a = 4a
\]

Then \(4 \mid 1 + (-1)^n (2n-1) \)

Suppose \(n \) odd. Then \(\exists a \in \mathbb{Z} \) s.t. \(n = 2a + 1 \).

\[
1 + (-1)^n (2n-1) = 1 - (2n-1) = -2n + 2
\]

\[
= -2(2a+1) + 2 = -4a - 2 + 2
\]

\[
= -4a = 4(-a)
\]

Then \(1 + (-1)^n (2n-1) \) is divisible by 4.

Proposition: \(\forall n \in \mathbb{Z}, \ 1 + (-1)^n (2n-1) \) is divisible by 4. \(\Box \)
Suppose $c = \gcd(a, b)$ and $c > 1$.

$c \mid a$ and $c \mid b$

b is prime. So, divisor of b: $\{1, b, -1, -b\}$.

So: $c \in \{1, b, -1, -b\}$ AND $c > 1$.

So, $c = b$.

Proposition:
If b is prime and $\gcd(a, b) > 1$ (for some $a \in \mathbb{Z}$), then $\gcd(a, b) = b$.

Let $a \in \mathbb{Z}$, $a^2 \mid a$.

That is: $\exists x \in \mathbb{Z}$ st $a^2 x = a$.

Then: $a^2 x - a = 0$
\[a(ax - 1) = 0 \]

So: $a = 0$ or $ax = 1$.

If $a = 0$: then $a^2 = 0 = 0 = |a| = |a|$

If $ax = 1$: a is a divisor of 1

So $a \in \{-1, 1\}$.

Then $a^2 = 1 = |a|$

\[\square \]

Proposition: If $a^2 \mid \mid \mid |a|$, then $|a| = a^2$.
\[3 = 2^2 - 1^2 \]
\[5 = 3^2 - 2^2 \]
\[7 = 4^2 - 3^2 \]
\[9 = 5^2 - 4^2 \]

\[2a + 1 = (a+1)^2 - a^2 \]
\[= a^2 + 2a + 1 - a^2 \]
\[= 2a + 1 \]

Let \(n \) be any odd integer. Then \(n = 2a + 1 \) for some \(a \in \mathbb{Z} \).

\((a+1), \ a \) both integers.

\((a+1)^2 - a^2 = a^2 + 2a + 1 - a^2 = 2a + 1 = n.\)

So \(n \) is diff. of two squares.

Prop: Any odd integer is the difference of two perfect squares.
$a, b, c \in \mathbb{R}_+$

CASE 1: a is smallest.
Then: $a \leq b, a \leq c$.

CASE 2: b smallest.
Then: $b < a + c$.

CASE 3: c smallest.
Then: $c < a + s$.

WLOG, let a be smallest.

$(a \leq b, a \leq c)$

Then:
$b + c \geq a + c > a$

Proposition: Given any three positive real numbers, it is possible to choose two such that their sum is greater than the third.
<table>
<thead>
<tr>
<th>$x \geq 0$</th>
<th>$y \geq 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Case 1: $x \geq 0$ and $y \geq 0$

$|x+y| = x + y = |x| + |y|$

Then $|x+y| = |x| + |y|$

So $|x+y| \leq |x| + |y|$
CASE 2: \(x < 0 \) and \(y < 0 \) \(\Rightarrow \) \(x + y < 0 \)

\[
|x+y| = -(x+y) = -x - y = |x| + |y|
\]

\(|x+y| = |x| + |y| \)

\[
\begin{array}{c}
\underline{x = 2, \quad y = -5} \\
|2 + (-5)| = -[2 + (-5)] \\
\text{neg}
\end{array}
\]

\[
\frac{X=5}{\text{neq}}
\]

\(|5 + (-2)| = 5 - 2 \)

CASE 3a: \(x > 0, \ y < 0 \) \(\Rightarrow |x| \geq |y| \)

\[
|x+y| = |x-|y|| = x - |y| = 2|x| - |y| < |x| + |y|
\]

CASE 3b:

\[
|x+y| = |(|x| - |y|| = -1|x| + |y| \leq |x| + |y|
\]