Proving If-And-Only-If Statements

Outline:

Proposition: \(P \iff Q \).

Proof:
Proving If-And-Only-If Statements

Outline:

Proposition: \(P \Leftrightarrow Q \).

Proof:

Part 1: \(P \Rightarrow Q \).
Proving If-And-Only-If Statements

Outline:

Proposition: \(P \iff Q \).

Proof:

Part 1: \(P \implies Q \).
Part 2: \(Q \implies P \).
Outline:

Proposition: $P \iff Q$.

Proof:

Part 1: $P \implies Q$.

Part 2: $Q \implies P$.

Therefore, $P \iff Q$.

7. Proving Nonconditional Statements

7.1 If-And-Only-If Proof

7.2 Equivalent Statements

7.3 Existence and Uniqueness Proofs

7.4 (Non-) Constructive Proofs

Outline:

Proposition: $P \iff Q$.

Proof:

Part 1: $P \implies Q$.

Part 2: $Q \implies P$.

Therefore, $P \iff Q$.

Proposition: $\forall a, b \in \mathbb{Z}, a \equiv b \mod 6$ if and only if $a \equiv b \mod 2$ and $a \equiv b \mod 3$.
7. Proving Nonconditional Statements

7.1 If-And-Only-If Proof

7.2 Equivalent Statements

7.3 Existence and Uniqueness Proofs

7.4 (Non-) Constructive Proofs

Outline:

Proposition: \(P \iff Q \).

Proof:

Part 1: \(P \implies Q \).

Part 2: \(Q \implies P \).

Therefore, \(P \iff Q \).

Proposition: \(\forall a, b \in \mathbb{Z}, a \equiv b \mod 6 \) if and only if \(a \equiv b \mod 2 \) and \(a \equiv b \mod 3 \).

Proof:

Suppose \(a \equiv b \mod 6 \).
7. Proving Nonconditional Statements

7.1 If-And-Only-If Proof

7.2 Equivalent Statements

7.3 Existence and Uniqueness Proofs

7.4 (Non-) Constructive Proofs

Proving If-And-Only-If Statements

Outline:

Proposition: \(P \iff Q \).

Proof:

Part 1: \(P \implies Q \).
Part 2: \(Q \implies P \).

Therefore, \(P \iff Q \).

Proposition: \(\forall a, b \in \mathbb{Z}, a \equiv b \mod 6 \) if and only if \(a \equiv b \mod 2 \) and \(a \equiv b \mod 3 \).

Proof:

Suppose \(a \equiv b \mod 6 \). Then 6\(|(a - b)\), so \(6x = (a - b) \) for some \(x \in \mathbb{Z} \).
Then \((a - b) = 2(3x) = 3(2x) \), so \((a - b) \) is divisible by both 2 and 3. Then \(a \equiv b \mod 2 \) and \(a \equiv b \mod 3 \).
7. Proving Nonconditional Statements

7.1 If-And-Only-If Proof

7.2 Equivalent Statements

7.3 Existence and Uniqueness Proofs

7.4 (Non-) Constructive Proofs

Outline:

Proposition: \(P \iff Q \).

Proof:

Part 1: \(P \implies Q \).

Part 2: \(Q \implies P \).

Therefore, \(P \iff Q \).

Proposition: \(\forall a, b \in \mathbb{Z}, a \equiv b \mod 6 \) if and only if
\(a \equiv b \mod 2 \) and \(a \equiv b \mod 3 \).

Proof:

Suppose \(a \equiv b \mod 6 \). Then \(6 \mid (a - b) \), so \(6x = (a - b) \) for some \(x \in \mathbb{Z} \).

Then \((a - b) = 2(3x) = 3(2x) \), so \((a - b) \) is divisible by both 2 and 3. Then \(a \equiv b \mod 2 \) and \(a \equiv b \mod 3 \).

Suppose \(a \equiv b \mod 3 \) and \(a \equiv b \mod 2 \).
Proving If-And-Only-If Statements

Outline:

Proposition: \(P \iff Q \).

Proof:

Part 1: \(P \implies Q \).

Part 2: \(Q \implies P \).

Therefore, \(P \iff Q \). □

Proposition: \(\forall a, b \in \mathbb{Z}, a \equiv b \mod 6 \) if and only if \(a \equiv b \mod 2 \) and \(a \equiv b \mod 3 \).

Proof:

Suppose \(a \equiv b \mod 6 \). Then \(6|(a - b) \), so \(6x = (a - b) \) for some \(x \in \mathbb{Z} \). Then \((a - b) = 2(3x) = 3(2x) \), so \((a - b) \) is divisible by both 2 and 3. Then \(a \equiv b \mod 2 \) and \(a \equiv b \mod 3 \).

Suppose \(a \equiv b \mod 3 \) and \(a \equiv b \mod 2 \). Then \((a - b) = 2x = 3y \) for some \(x, y \in \mathbb{Z} \). From the first expression, we see that \((a - b) \) is even, so \(y \) is even as well. Then \(y = 2z \) for some \(z \in \mathbb{Z} \), so \((a - b) = 3y = 6z \). Therefore \(a \equiv b \mod 6 \). □
Proposition: \(\forall a, b \in \mathbb{N}, \gcd(a, b) = b \iff b \mid a \)
Proposition: \(\forall a, b \in \mathbb{N}, \gcd(a, b) = b \iff b|a \)

(\(\Rightarrow \))
Suppose \(\gcd(a, b) = b \). Then \(b \) is a divisor of both \(a \) and \(b \). In particular, \(b|a \).

(\(\Leftarrow \))
Suppose \(b|a \). Then \(b \) is a divisor of both \(a \) and \(b \), so \(\gcd(a, b) \geq b \). Since \(b > 0 \), any \(c \in \mathbb{N} \) with \(c > b \) is not a divisor of \(b \). So, \(\gcd(a, b) \leq b \). Therefore \(\gcd(a, b) = b \).
Lists of Equivalent Statements

Theorem: Suppose A is an $n \times n$ matrix. The following statements are equivalent:

(a) The matrix A is invertible.

(b) The equation $Ax = b$ has a unique solution for every $b \in \mathbb{R}^n$.

(c) The equation $Ax = 0$ has only the trivial solution.

(d) The reduced row echelon form of A is I_n.

(e) $\det(A) \neq 0$.

(f) The matrix A does not have 0 as an eigenvalue.
Lists of Equivalent Statements

Theorem: Suppose A is an $n \times n$ matrix. The following statements are equivalent:

(a) The matrix A is invertible.

(b) The equation $Ax = b$ has a unique solution for every $b \in \mathbb{R}^n$.

(c) The equation $Ax = 0$ has only the trivial solution.

(d) The reduced row echelon form of A is I_n.

(e) $\det(A) \neq 0$.

(f) The matrix A does not have 0 as an eigenvalue.
Lists of Equivalent Statements

Theorem: Suppose A is an $n \times n$ matrix. The following statements are equivalent:

(a) The matrix A is invertible.

(b) The equation $Ax = b$ has a unique solution for every $b \in \mathbb{R}^n$.

(c) The equation $Ax = 0$ has only the trivial solution.

(d) The reduced row echelon form of A is I_n.

(e) $\det(A) \neq 0$.

(f) The matrix A does not have 0 as an eigenvalue.
Theorem: Suppose A is an $n \times n$ matrix. The following statements are equivalent:

(a) The matrix A is invertible.

(b) The equation $Ax = b$ has a unique solution for every $b \in \mathbb{R}^n$.

(c) The equation $Ax = 0$ has only the trivial solution.

(d) The reduced row echelon form of A is I_n.

(e) $\det(A) \neq 0$.

(f) The matrix A does not have 0 as an eigenvalue.
Theorem: Suppose A is an $n \times n$ matrix. The following statements are equivalent:

(a) The matrix A is invertible.

(b) The equation $Ax = b$ has a unique solution for every $b \in \mathbb{R}^n$.

(c) The equation $Ax = 0$ has only the trivial solution.

(d) The reduced row echelon form of A is I_n.

(e) $\det(A) \neq 0$.

(f) The matrix A does not have 0 as an eigenvalue.

\[(a) \quad \Rightarrow \quad (b) \quad \Rightarrow \quad (c) \quad \Leftarrow \quad (d) \quad \Leftarrow \quad (e) \quad \Leftarrow \quad (f) \]
Proposition: For any $x, y \in \mathbb{R} - \{0\}$, the following statements are equivalent:

(A) $|x + y| = |x| + |y|

(B) $xy = |xy|

(C) $(x + y)^2 = x^2 + y^2 + 2|xy|

(D) x and y have the same sign
Equivalent Statements

Proposition: For any $x, y \in \mathbb{R} - \{0\}$, the following statements are equivalent:

- (A) $|x + y| = |x| + |y|$
- (B) $xy = |xy|$
- (C) $(x + y)^2 = x^2 + y^2 + 2|xy|$
- (D) x and y have the same sign
Existence versus Existence and Uniqueness

Proposition: There exists a natural number n such that $n^2 = n$.

Proposition: There exists a *unique* natural number n such that $n^2 = n$.
Proposition: There exists a natural number \(n \) such that \(n^2 = n \).

There is at least one.

Proposition: There exists a unique natural number \(n \) such that \(n^2 = n \).
Existence versus Existence and Uniqueness

Proposition: There exists a natural number n such that $n^2 = n$.

There is at least one.

Proposition: There exists a unique natural number n such that $n^2 = n$.

There is exactly one.
Existence versus Existence and Uniqueness

Proposition: There exists a natural number \(n \) such that \(n^2 = n \).

There is at least one.

\[\exists n \in \mathbb{N}, n^2 = n \]

Proposition: There exists a *unique* natural number \(n \) such that \(n^2 = n \).

There is exactly one.

\[\exists! n \in \mathbb{N}, n^2 = n \]
Existence versus Existence and Uniqueness

Proposition: There exists a natural number n such that $n^2 = n$.

There is at least one.

$$\exists n \in \mathbb{N}, n^2 = n$$

Proposition: There exists a *unique* natural number n such that $n^2 = n$.

There is exactly one.

$$\exists! n \in \mathbb{N}, n^2 = n$$
Existence versus Existence and Uniqueness

Proposition: There exists a natural number n such that $n^2 = n$.

There is at least one.

$\exists n \in \mathbb{N}, n^2 = n$

Proof: Note that $1 \in \mathbb{N}$, and $1^2 = 1$.

Proposition: There exists a *unique* natural number n such that $n^2 = n$.

There is exactly one.

$\exists! n \in \mathbb{N}, n^2 = n$
Existence versus Existence and Uniqueness

Proposition: There exists a natural number n such that $n^2 = n$.

There is at least one.

$\exists n \in \mathbb{N}, n^2 = n$

Proof: Note that $1 \in \mathbb{N}$, and $1^2 = 1$.

Proposition: There exists a *unique* natural number n such that $n^2 = n$.

There is exactly one.

$\exists! n \in \mathbb{N}, n^2 = n$

Proof: Note that $1 \in \mathbb{N}$, and $1^2 = 1$. So, there exists at least one $n \in \mathbb{N}$ such that $n^2 = 1$.

Now, suppose $n \in \mathbb{N}$ and $n^2 = n$. Then $n^2 - n = 0$, so $n(n - 1) = 0$. Then $n = 1$ or $n = 0$. Since $n \in \mathbb{N}$, we conclude $n = 1$. That is, $n = 1$ is the *only* natural number such that $n^2 = n$.
Good or Bad?

Proposition: Let \(f(x) = \frac{xe^x - 5x^2e^x}{x^4} \).
There exists a unique integer \(x \) such that \(f(x) = 0 \).

Proof: Suppose \(x \in \mathbb{Z} \) and \(f(x) = 0 \). Then:

\[
\frac{xe^x - 5x^2e^x}{x^4} = 0
\]

\[
x^4e^x - 5x^2e^x = 0
\]

\[
xe^x(1 - 5x) = 0
\]

\[
x = 0 \text{ or } e^x = 0 \text{ or } (1 - 5x) = 0
\]

\[
x = 0 \text{ or } x = \frac{1}{5}
\]

Since \(x \in \mathbb{Z} \), we conclude \(x = 0 \). That is, the only integer solution to \(f(x) = 0 \) is \(x = 0 \).
Proposition: Let \(f(x) = \frac{xe^x - 5x^2e^x}{x^4} \).
There exists a unique integer \(x \) such that \(f(x) = 0 \).

Proof: Suppose \(x \in \mathbb{Z} \) and \(f(x) = 0 \). Then:

\[
\frac{xe^x - 5x^2e^x}{x^4} = 0
\]

\[
xe^x - 5x^2e^x = 0
\]

\[
x = 0 \quad \text{or} \quad e^x = 0 \quad \text{or} \quad (1 - 5x) = 0
\]

\[
x = 0 \quad \text{or} \quad x = \frac{1}{5}
\]

Since \(x \in \mathbb{Z} \), we conclude \(x = 0 \). That is, the only integer solution to \(f(x) = 0 \) is \(x = 0 \).

But \(x = 0 \) is not in the domain of \(f(x) \). IF any integer solution exists, THEN there's only one... but actually, none exists!
Proposition: There exists precisely one even prime number.
Proposition: There exists precisely one even prime number.

Proof: First, we note that 2 is an even prime number, so there exists at least one even prime number.

To show that 2 is unique, suppose n is an even prime number. Since n is even, $n = 2a$ for some integer a. Since n is prime, n is positive, and the only positive divisors of n are 1 and n. But, we just showed that 2 is a positive divisor of n. So, $2 \in \{x \in \mathbb{N} : x|n\} = \{1, n\}$. Since $2 \neq 1$, we conclude $2 = n$. We conclude that 2 is the only even prime number.
Greatest Common Divisor

Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + b\ell = 1$$
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + b\ell = 1$$

Proof:
Let $A = \{ax + by : x, y \in \mathbb{Z}\}$.
Let d be the smallest positive element of A, and say $d = ak + b\ell$.

Claim: $d|a$.

Proof of Claim:
There exists an integer q such that $a = dq + r$ for some $r \in \mathbb{Z}$, $0 \leq r < d$. (Division.)

$$r = a - dq$$
$$= a - [ak + b\ell]q$$
$$= a(1 - kq) + b(-\ell q)$$

So, $r \in A$. Since $0 \leq r < d$ (since it’s a remainder) and $r \leq 0$ or $r \geq d$, we conclude $r = 0$. That is, $d|a$.

By the same logic, $d|b$, so $d = 1$.
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that
\[ak + b\ell = 1 \]

Corollary: Given any two integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that
\[ak + b\ell = \gcd(a, b) \]
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + bl = 1$$

Corollary: Given any two integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + bl = \gcd(a, b)$$

Proof:
Let $d = \gcd(a, b)$.

- **Claim 1:** $\frac{a}{d}, \frac{b}{d} \in \mathbb{Z}$.

- **Claim 2:** $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

By the Proposition above, there exist $k, \ell \in \mathbb{Z}$ such that

$$\left(\frac{a}{d}\right)k + \left(\frac{b}{d}\right)\ell = 1.$$

Then, multiplying both sides of the equation by d,

$$ak + bl = d.$$
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + b\ell = 1$$

- $a = 3, \ b = 7$:

 $7(2) - 3(1) = 1$

 $a = 5, \ b = 8$:

 $5(5) - 8(3) = 1$; also $8(2) - 5(3) = 1$

 $a = 22, \ b = 37$:

 $37(3) - 22(5) = 111 - 110 = 1$

The proof we gave was non-constructive. It didn’t tell us what k and ℓ were–only that they exist.
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + b\ell = 1$$

- $a = 3, b = 7$: $7(2) - 3(1) = 1$
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that
\[ak + b\ell = 1 \]

- $a = 3$, $b = 7$: $7(2) - 3(1) = 1$
- $a = 5$, $b = 8$: $37(3) - 22(5) = 111 - 110 = 1$

The proof we gave was non-constructive. It didn’t tell us what k and ℓ were—only that they exist.
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + b\ell = 1$$

- $a = 3, b = 7$: $7(2) - 3(1) = 1$
- $a = 5, b = 8$: $5(5) - 8(3) = 1$; also $8(2) - 5(3) = 1$
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + b\ell = 1$$

- $a = 3, b = 7$: $7(2) - 3(1) = 1$
- $a = 5, b = 8$: $5(5) - 8(3) = 1$; also $8(2) - 5(3) = 1$
- $a = 22, b = 37$: $37(3) - 22(5) = 111 - 110 = 1$

The proof we gave was non-constructive. It didn't tell us what k and ℓ were—only that they exist.
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + b\ell = 1$$

- $a = 3, b = 7$: $7(2) - 3(1) = 1$
- $a = 5, b = 8$: $5(5) - 8(3) = 1$; also $8(2) - 5(3) = 1$
- $a = 22, b = 37$: $37(3) - 22(5) = 111 - 110 = 1$
Proposition: Given any two coprime integers a and b, there exist $k, \ell \in \mathbb{Z}$ such that

$$ak + b\ell = 1$$

- $a = 3, b = 7$: $7(2) - 3(1) = 1$
- $a = 5, b = 8$: $5(5) - 8(3) = 1$; also $8(2) - 5(3) = 1$
- $a = 22, b = 37$: $37(3) - 22(5) = 111 - 110 = 1$

The proof we gave was non-constructive. It didn’t tell us what k and ℓ were—only that they exist.
7. Proving Nonconditional Statements

7.1 If-And-Only-If Proof
7.2 Equivalent Statements
7.3 Existence and Uniqueness Proofs
7.4 (Non-) Constructive Proofs

Powers of Irrationals

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, \ x^y \in \mathbb{Q} \)
Powers of Irrationals

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q} \)

Proof: (non-constructive)

Let \(r = \sqrt{2}^{\sqrt{2}} \).
Powers of Irrationals

Proposition: $\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q}$

Proof: (non-constructive)

Let $r = \sqrt{2^{\sqrt{2}}}$.

If r is rational,

If r is irrational,
Powers of Irrationals

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q} \)

Proof: (non-constructive)

Let \(r = \sqrt{2}^{\sqrt{2}} \).
If \(r \) is rational, then take \(x = y = \sqrt{2} \).
If \(r \) is irrational,

Powers of Irrationals

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q} \)

Proof: (non-constructive)

Let \(r = \sqrt{2}^{\sqrt{2}} \).
If \(r \) is rational, then take \(x = y = \sqrt{2} \).
If \(r \) is irrational, then take \(x = r \) and \(y = \sqrt{2} \).
Powers of Irrationals

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, \ x^y \in \mathbb{Q} \)

Proof: (non-constructive)

Let \(r = \sqrt{2}^{\sqrt{2}} \).

If \(r \) is rational, then take \(x = y = \sqrt{2} \).

If \(r \) is irrational, then take \(x = r \) and \(y = \sqrt{2} \).

\[
x^y = \left(\sqrt{2}^{\sqrt{2}} \right)^{\sqrt{2}} = \sqrt{2}^{\left(\sqrt{2}\right)\left(\sqrt{2}\right)} = \sqrt{2}^2 = 2
\]
Powers of Irrationals

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, \ x^y \in \mathbb{Q} \)

Proof: (non-constructive)

Let \(r = \sqrt{2}^{\sqrt{2}} \).
If \(r \) is rational, then take \(x = y = \sqrt{2} \).
If \(r \) is irrational, then take \(x = r \) and \(y = \sqrt{2} \).

\[
x^y = \left(\sqrt{2}^{\sqrt{2}} \right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2
\]

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, \ x^y \in \mathbb{Q} \)
Powers of Irrationals

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q} \)

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q} \)

Proof: (Constructive)

Let \(x = \sqrt{2} \) and \(y = \log_2 9 \).

Claim: \(y \notin \mathbb{Q} \).

Proof of claim: Suppose \(p/q = \log_2 9 \) for some \(p, q \in \mathbb{Z} \). Since \(\log_2 9 > 0 \), actually we can choose \(p, q \in \mathbb{N} \). Then \(2^{p/q} = 9 = 3^2 \), so \(2^p = 3^2 q \). Since \(p \in \mathbb{N} \), the left-hand side of the equation is even. But the right-hand side is the product of odd numbers, so it is odd. Then an even number is equal to an odd number, which is a contradiction.

We conclude \(y \notin \mathbb{Q} \).

\(x^y = \sqrt{2} \log_2 9 = \sqrt{2} \log_2 3 = 3 \).
Powers of Irrationals

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q} \)

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q} \)

Proof: (Constructive)

Let \(x = \sqrt{2} \) and \(y = \log_2 9 \).

Claim: \(y \notin \mathbb{Q} \).
Powers of Irrationals

Proposition: $\exists x, y \in \mathbb{R} - \mathbb{Q}, \ x^y \in \mathbb{Q}$

Proposition: $\exists x, y \in \mathbb{R} - \mathbb{Q}, \ x^y \in \mathbb{Q}$

Proof: (Constructive)

Let $x = \sqrt{2}$ and $y = \log_2 9$.

Claim: $y \notin \mathbb{Q}$.

Proof of claim: Suppose $\frac{p}{q} = \log_2 9$ for some $p, q \in \mathbb{Z}$. Since $\log_2 9 > 0$, actually we can choose $p, q \in \mathbb{N}$.

Then $2^{p/q} = 9 = 3^2$, so $2^p = 3^{2q}$. Since $p \in \mathbb{N}$, the left-hand side of the equation is even. But the right-hand side is the product of odd numbers, so it is odd. Then an even number is equal to an odd number, which is a contradiction.

We conclude $y \notin \mathbb{Q}$.
Powers of Irrationals

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q} \)

Proposition: \(\exists x, y \in \mathbb{R} - \mathbb{Q}, x^y \in \mathbb{Q} \)

Proof: (Constructive)

Let \(x = \sqrt{2} \) and \(y = \log_2 9 \).

Claim: \(y \notin \mathbb{Q} \).

Proof of claim: Suppose \(\frac{p}{q} = \log_2 9 \) for some \(p, q \in \mathbb{Z} \). Since \(\log_2 9 > 0 \), actually we can choose \(p, q \in \mathbb{N} \).

Then \(2^{p/q} = 9 = 3^2 \), so \(2^p = 3^{2q} \). Since \(p \in \mathbb{N} \), the left-hand side of the equation is even. But the right-hand side is the product of odd numbers, so it is odd. Then an even number is equal to an odd number, which is a contradiction.

We conclude \(y \notin \mathbb{Q} \).

\[
x^y = \sqrt{2}^{\log_2 9} = \sqrt{2}^{2 \log_2 3} = 2^{\log_2 3} = 3
\]