Specialized vocabulary
- Specialized vocabulary
- More world-building: divisibility
■ Specialized vocabulary
■ More world-building: divisibility
■ Then we prove stuff!!!
Theorems

Definition

A statement that is true and has been proved to be true can be a \textbf{theorem}, a \textbf{proposition}, a \textbf{lemma}, or a \textbf{corollary}.

- \textbf{Theorem}: most significant.
- \textbf{Proposition}: slightly less significant, or perhaps quite basic.
- \textbf{Lemma}: only use is to prove a theorem or proposition.
- \textbf{Corollary}: follows directly from a theorem. (If you know a theorem, then its corollary should be extremely easy to prove.) Can also be significant.

- **Pythagorean Theorem**: If a right triangle has hypotenuse of length \(c\), and other sides of length \(a\) and \(b\) respectively, then \(a^2 + b^2 = c^2\).
- **Fundamental Theorem of Algebra**: If \(P(x)\) is a polynomial, with real coefficients, in the single variable \(x\), then \(P(x)\) can be factored into the product of linear and quadratic functions.
- **Fundamental Theorem of Calculus, Part 1**: If \(f\) is continuous on \([a, b]\), then the function \(g(x)\), defined by \(g(x) = \int_a^x f(t) \, dt\), with domain \(a \leq x \leq b\), is continuous on \([a, b]\), differentiable on \((a, b)\), and \(g'(x) = f(x)\).
Theorems

Definition

A statement that is true and has been proved to be true can be a theorem, a proposition, a lemma, or a corollary.

Theorem: most significant.
A statement that is true and has been proved to be true can be a theorem, a proposition, a lemma, or a corollary.

Theorem: most significant.

Proposition: slightly less significant, or perhaps quite basic.
A statement that is true and has been proved to be true can be a theorem, a proposition, a lemma, or a corollary.

Theorem: most significant.
Proposition: slightly less significant, or perhaps quite basic.
Lemma: only use is to prove a theorem or proposition.
Definition

A statement that is true and has been proved to be true can be a theorem, a proposition, a lemma, or a corollary.

Theorem: most significant.
Proposition: slightly less significant, or perhaps quite basic.
Lemma: only use is to prove a theorem or proposition.
Corollary: follows directly from a theorem. (If you know a theorem, then its corollary should be extremely easy to prove.) Can also be significant.
Theorems

Definition

A a statement that is true and has been proved to be true can be a theorem, a proposition, a lemma, or a corollary.

Theorem: most significant.

Proposition: slightly less significant, or perhaps quite basic.

Lemma: only use is to prove a theorem or proposition.

Corollary: follows directly from a theorem. (If you know a theorem, then its corollary should be extremely easy to prove.) Can also be significant.

Pythagorean Theorem: If a right triangle has hypotenuse of length c, and other sides of length a and b respectively, then $a^2 + b^2 = c^2$.

Fundamental Theorem of Algebra: If $P(x)$ is a polynomial, with real coefficients, in the single variable x, then $P(x)$ can be factored into the product of linear and quadratic functions.

Fundamental Theorem of Calculus, Part 1: If f is continuous on $[a, b]$, then the function $g(x)$, defined by $g(x) = \int_a^x f(t)dt$, with domain $a \leq x \leq b$, is continuous on $[a, b]$, differentiable on (a, b), and $g'(x) = f(x)$.

Theorem: There are infinitely many prime numbers.
Statements that Aren’t Theorems

A conjecture is a statement that someone thinks is true, but that has not been proven to be true or false.
A conjecture is a statement that someone thinks is true, but that has not been proven to be true or false.

Goldbach Conjecture: Every even integer greater than 2 can be written as the sum of two primes.
A conjecture is a statement that someone thinks is true, but that has not been proven to be true or false.

Goldbach Conjecture: Every even integer greater than 2 can be written as the sum of two primes.

Conjecture: $P \neq NP$
A conjecture is a statement that someone thinks is true, but that has not been proven to be true or false.

Goldbach Conjecture: Every even integer greater than 2 can be written as the sum of two primes.

Conjecture: $P \neq NP$

Conjecture: $P = NP$
A conjecture is a statement that someone thinks is true, but that has not been proven to be true or false.

Goldbach Conjecture: Every even integer greater than 2 can be written as the sum of two primes.

Conjecture: $P \neq NP$

Conjecture: $P = NP$

Collatz Conjecture: Given any positive integer n, the series of operations:

- if n is even, replace it with $\frac{n}{2}$
- if n is odd, replace it with $3n + 1$

will eventually result in $n = 1$.
A **definition** is an unambiguous explanation of the meaning of a mathematical word or phrase.
Definitions

A definition is an unambiguous explanation of the meaning of a mathematical word or phrase.

A definition isn’t true or false: it’s simply agreed on.
A **definition** is an unambiguous explanation of the meaning of a mathematical word or phrase.

A definition isn’t true or false: it’s simply agreed on.

Definition: Let \mathbb{N} be the set of natural numbers, $\{1, 2, 3, \ldots\}$
A **definition** is an unambiguous explanation of the meaning of a mathematical word or phrase.

A definition isn’t true or false: it’s simply agreed on.

Definition: Let \mathbb{N} be the set of natural numbers, \{1, 2, 3, \ldots\}

Definition: Let a be the largest element in the set \{a_1, a_2, a_3\}.

Definition: Let \mathbb{N} be the set of natural numbers, \{1, 2, 3, \ldots\}
Definition

A **definition** is an unambiguous explanation of the meaning of a mathematical word or phrase.

A definition isn’t true or false: it’s simply agreed on.

Definition: Let \(\mathbb{N} \) be the set of natural numbers, \(\{1, 2, 3, \ldots\} \)

Definition: Let \(a \) be the largest element in the set \(\{a_1, a_2, a_3\} \).

Definition: A set is a collection of objects.

Bad definition: Is the set of all sets a set?
Parity

Definition

An integer n is **even** if $n = 2a$ for some integer $a \in \mathbb{Z}$.

An integer n is **odd** if $n = 2a + 1$ for some integer $a \in \mathbb{Z}$.
Parity

Definition

An integer n is **even** if $n = 2a$ for some integer $a \in \mathbb{Z}$.

An integer n is **odd** if $n = 2a + 1$ for some integer $a \in \mathbb{Z}$.

True or False: 0 is both odd and even.
Parity

Definition

An integer n is **even** if $n = 2a$ for some integer $a \in \mathbb{Z}$.

An integer n is **odd** if $n = 2a + 1$ for some integer $a \in \mathbb{Z}$.

True or False: 0 is both odd and even.

False. There is no integer a so that $0 = 2a + 1$, so 0 is not odd.
Parity

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>An integer n is even if $n = 2a$ for some integer $a \in \mathbb{Z}$.</td>
</tr>
<tr>
<td>An integer n is odd if $n = 2a + 1$ for some integer $a \in \mathbb{Z}$.</td>
</tr>
</tbody>
</table>

True or False: 0 is both odd and even.
False. There is no integer a so that $0 = 2a + 1$, so 0 is not odd.

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two integers have the same parity if they are both even or both odd. If one integer is even and another integer is odd, they have opposite parity.</td>
</tr>
</tbody>
</table>
Parity

Definition

An integer \(n \) is **even** if \(n = 2a \) for some integer \(a \in \mathbb{Z} \).

An integer \(n \) is **odd** if \(n = 2a + 1 \) for some integer \(a \in \mathbb{Z} \).

True or False: 0 is both odd and even.

False. There is no integer \(a \) so that \(0 = 2a + 1 \), so 0 is not odd.

Definition

Two integers have the **same parity** if they are both even or both odd. If one integer is even and another integer is odd, they have **opposite parity**.

Show that the sum of two numbers of opposite parity is odd.
Parity

Definition

An integer n is **even** if $n = 2a$ for some integer $a \in \mathbb{Z}$.

An integer n is **odd** if $n = 2a + 1$ for some integer $a \in \mathbb{Z}$.

True or False: 0 is both odd and even.
False. There is no integer a so that $0 = 2a + 1$, so 0 is not odd.

Definition

Two integers have the **same parity** if they are both even or both odd.
If one integer is even and another integer is odd, they have **opposite parity**.

Show that the sum of two numbers of opposite parity is odd.
Let n be an even number and m be an odd number.
By the definitions of even and odd, there exist integers a and b such that $n = 2a$ and $m = 2b + 1$.
Then $n + m = (2a) + (2b + 1) = 2(a + b) + 1$.
Since $a + b$ is an integer, by the definition of odd, $n + m$ is odd.
A Note on Definitions

We use a special convention with definitions.

We use a special convention with definitions.
A Note on Definitions

We use a special convention with definitions.

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>An integer n is even if $n = 2a$ for some integer $a \in \mathbb{Z}$.</td>
</tr>
<tr>
<td>An integer n is odd if $n = 2a + 1$ for some integer $a \in \mathbb{Z}$.</td>
</tr>
</tbody>
</table>
A Note on Definitions

We use a special convention with definitions.

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>An integer n is even if $n = 2a$ for some integer $a \in \mathbb{Z}$.</td>
</tr>
<tr>
<td>An integer n is odd if $n = 2a + 1$ for some integer $a \in \mathbb{Z}$.</td>
</tr>
</tbody>
</table>

Written:

$n = 2a \implies n$ even
We use a special convention with definitions.

Definition

An integer n is **even** if $n = 2a$ for some integer $a \in \mathbb{Z}$.

An integer n is **odd** if $n = 2a + 1$ for some integer $a \in \mathbb{Z}$.

Written:

$n = 2a \implies n$ even

Intended Meaning:

$n = 2a \iff n$ even
A Note on Definitions

We use a special convention with definitions.

Definition

An integer \(n \) is **even** if and only if \(n = 2a \) for some integer \(a \in \mathbb{Z} \).

An integer \(n \) is **odd** if and only if \(n = 2a + 1 \) for some integer \(a \in \mathbb{Z} \).

Written:

\[n = 2a \implies n \text{ even} \]

Intended Meaning:

\[n = 2a \iff n \text{ even} \]
A Note on Definitions

We use a special convention with definitions.

Definition

An integer \(n \) is **even** if and only if \(n = 2a \) for some integer \(a \in \mathbb{Z} \).

An integer \(n \) is **odd** if and only if \(n = 2a + 1 \) for some integer \(a \in \mathbb{Z} \).

Written:

\[n = 2a \implies n \text{ even} \]

Intended Meaning:

\[n = 2a \iff n \text{ even} \]

This is how people write definitions. (Convention.)
More Definitions

Definition

Suppose a and b are integers. We say a divides b, written $a | b$, if $b = ac$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and b is a multiple of a.

Example: $10 = 2 \cdot 5$

2 is a divisor of 10

10 is a multiple of 2
More Definitions

Definition

Suppose a and b are integers. We say a divides b, written $a|b$, if $b = ac$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and b is a multiple of a.

Example: $10 = 2 \cdot 5$

- $2|10$, $5|10$
Definition

Suppose a and b are integers. We say a divides b, written $a|b$ if $b = ac$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and b is a multiple of a.

Example: $10 = 2 \cdot 5$

- $2|10$, $5|10$
- 2 is a divisor of 10
More Definitions

Definition

Suppose \(a \) and \(b \) are integers. We say \(a \) divides \(b \), written \(a \mid b \), if \(b = ac \) for some \(c \in \mathbb{Z} \). In this case we also say that \(a \) is a divisor of \(b \), and \(b \) is a multiple of \(a \).

Example: \(10 = 2 \cdot 5 \)

- \(2 \mid 10, \ 5 \mid 10 \)
- \(2 \) is a divisor of \(10 \)
- \(10 \) is a multiple of \(2 \)
More Definitions

Definition

Suppose \(a \) and \(b \) are integers. We say \(a \) divides \(b \), written \(a \mid b \), if \(b = ac \) for some \(c \in \mathbb{Z} \). In this case we also say that \(a \) is a divisor of \(b \), and \(b \) is a multiple of \(a \).

Example: \(10 = 2 \cdot 5 \)

- \(2 \mid 10 \), \(5 \mid 10 \)
- \(2 \) is a divisor of \(10 \)
- \(10 \) is a multiple of \(2 \)
- Is \(0 \) a divisor of \(10 \)?
More Definitions

Definition

Suppose a and b are integers. We say a divides b, written $a|b$ if $b = ac$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and b is a multiple of a.

Example: $10 = 2 \cdot 5$

- $2|10$, $5|10$
- 2 is a divisor of 10
- 10 is a multiple of 2
- Is 0 a divisor of 10? No. There is no $a \in \mathbb{Z}$ with $0a = 10$. We write $0 \nmid 10$
Definition

Suppose a and b are integers. We say a divides b, written $a|b$ if $b = ac$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and b is a multiple of a.

Example: $10 = 2 \cdot 5$

- $2|10$, $5|10$
- 2 is a divisor of 10
- 10 is a multiple of 2
- Is 0 a divisor of 10? **No.** There is no $a \in \mathbb{Z}$ with $0a = 10$. We write $0 \not| 10$
- Is -1 a divisor of 10?
Definition

Suppose a and b are integers. We say a divides b, written $a | b$, if $b = ac$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and b is a multiple of a.

Example: $10 = 2 \cdot 5$

- $2 | 10$, $5 | 10$
- 2 is a divisor of 10
- 10 is a multiple of 2
- Is 0 a divisor of 10? No. There is no $a \in \mathbb{Z}$ with $0a = 10$. We write $0 \nmid 10$
- Is -1 a divisor of 10? Yes, $-10 \in \mathbb{Z}$ and $(-1)(-10) = 10$.
More Definitions

Definition

Suppose a and b are integers. We say a divides b, written $a|b$ if $b = ac$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and b is a multiple of a.

Example: $10 = 2 \cdot 5$

- $2|10$, $5|10$
- 2 is a divisor of 10
- 10 is a multiple of 2
- Is 0 a divisor of 10? No. There is no $a \in \mathbb{Z}$ with $0a = 10$. We write $0 \nmid 10$
- Is -1 a divisor of 10? Yes, $-10 \in \mathbb{Z}$ and $(-1)(-10) = 10$.

$\{a \in \mathbb{Z} : a|10\} = \{a \in \mathbb{Z} : a|0\} =$
Definition

Suppose a and b are integers. We say a divides b, written $a | b$, if $b = ac$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and b is a multiple of a.

Example: $10 = 2 \cdot 5$

- $2 | 10$, $5 | 10$
- 2 is a divisor of 10
- 10 is a multiple of 2
- Is 0 a divisor of 10? No. There is no $a \in \mathbb{Z}$ with $0a = 10$. We write $0 \nmid 10$
- Is -1 a divisor of 10? Yes, $-10 \in \mathbb{Z}$ and $(-1)(-10) = 10$.

$\{a \in \mathbb{Z} : a | 10\} = \{-10, -5, -2, -1, 1, 2, 5, 10\}$
$\{a \in \mathbb{Z} : a | 0\} =$
Definition

Suppose a and b are integers. We say a divides b, written

$$a|b$$

if $b = ac$ for some $c \in \mathbb{Z}$. In this case we also say that a is a divisor of b, and b is a multiple of a.

Example: $10 = 2 \cdot 5$

- $2|10$, $5|10$
- 2 is a divisor of 10
- 10 is a multiple of 2
- Is 0 a divisor of 10? No. There is no $a \in \mathbb{Z}$ with $0a = 10$. We write $0 \not| 10$
- Is -1 a divisor of 10? Yes, $-10 \in \mathbb{Z}$ and $(-1)(-10) = 10$

$$\{a \in \mathbb{Z} : a|10\} = \{-10, -5, -2, -1, 1, 2, 5, 10\}$$
$$\{a \in \mathbb{Z} : a|0\} = \mathbb{Z}$$
Definition

A number $n \in \mathbb{N}$ is \textbf{prime} if it has exactly two positive divisors, 1 and n.
More Definitions

Definition

A number \(n \in \mathbb{N} \) is **prime** if it has exactly two positive divisors, 1 and \(n \).

Is 1 prime?
A number \(n \in \mathbb{N} \) is **prime** if it has exactly two positive divisors, 1 and \(n \).

Is 1 prime? **No:** it only has one positive divisor.
Definition

A number \(n \in \mathbb{N} \) is \textbf{prime} if it has exactly two positive divisors, 1 and \(n \).

Is 1 prime? \textbf{No}: it only has one positive divisor.

Can a negative number be prime?
Definition

A number $n \in \mathbb{N}$ is **prime** if it has exactly two positive divisors, 1 and n.

Is 1 prime? **No**: it only has one positive divisor.

Can a negative number be prime? **No**: it is not in \mathbb{N}.
A number $n \in \mathbb{N}$ is **prime** if it has exactly two positive divisors, 1 and n.

An integer n is **composite** if $n = ab$ for two integers a, b with $a > 1$ and $b > 1$.

Is 1 prime? **No**: it only has one positive divisor.

Can a negative number be prime? **No**: it is not in \mathbb{N}.
Definition

A number \(n \in \mathbb{N} \) is **prime** if it has exactly two positive divisors, 1 and \(n \).

An integer \(n \) is **composite** if \(n = ab \) for two integers \(a, b \) with \(a > 1 \) and \(b > 1 \).

Is 1 prime? **No:** it only has one positive divisor.

Can a negative number be prime? **No:** it is not in \(\mathbb{N} \).

What is the smallest composite number?
More Definitions

Definition

A number $n \in \mathbb{N}$ is **prime** if it has exactly two positive divisors, 1 and n.

An integer n is **composite** if $n = ab$ for two integers a, b with $a > 1$ and $b > 1$.

Is 1 prime? **No**: it only has one positive divisor.

Can a negative number be prime? **No**: it is not in \mathbb{N}.

What is the smallest composite number? 4
4. Direct Proof

4.1 Theorems and their Friends

4.2 Definitions

4.3 Direct Proof

4.4 Using Cases

4.5 Treating Similar Cases

More Definitions

Definition

A number \(n \in \mathbb{N} \) is **prime** if it has exactly two positive divisors, 1 and \(n \).

An integer \(n \) is **composite** if \(n = ab \) for two integers \(a, b \) with \(a > 1 \) and \(b > 1 \).

Definition

The **greatest common divisor** of integers \(a \) and \(b \), which are not both zero, denoted \(\text{gcd}(a, b) \), is the largest integer that divides both \(a \) and \(b \).

The **least common multiple** of non-zero integers \(a \) and \(b \), denoted \(\text{lcm}(a, b) \), is the smallest positive integer that is a multiple of both \(a \) and \(b \).

\[
\text{gcd}(0, -18) = \]
Definition

A number $n \in \mathbb{N}$ is **prime** if it has exactly two positive divisors, 1 and n.

An integer n is **composite** if $n = ab$ for two integers a, b with $a > 1$ and $b > 1$.

Definition

The **greatest common divisor** of integers a and b, which are not both zero, denoted $\gcd(a, b)$, is the largest integer that divides both a and b.

The **least common multiple** of non-zero integers a and b, denoted $\text{lcm}(a, b)$, is the smallest positive integer that is a multiple of both a and b.

$\gcd(0, -18) = 18$
More Definitions

Definition

A number \(n \in \mathbb{N} \) is **prime** if it has exactly two positive divisors, 1 and \(n \).

An integer \(n \) is **composite** if \(n = ab \) for two integers \(a, b \) with \(a > 1 \) and \(b > 1 \).

Definition

The **greatest common divisor** of integers \(a \) and \(b \), which are not both zero, denoted \(\gcd(a, b) \), is the largest integer that divides both \(a \) and \(b \).

The **least common multiple** of non-zero integers \(a \) and \(b \), denoted \(\text{lcm}(a, b) \), is the smallest positive integer that is a multiple of both \(a \) and \(b \).

\[
\gcd(0, -18) = 18 \\
\text{lcm}(-2, 5) = 10
\]
More Definitions

Definition

A number \(n \in \mathbb{N} \) is **prime** if it has exactly two positive divisors, 1 and \(n \).

An integer \(n \) is **composite** if \(n = ab \) for two integers \(a, b \) with \(a > 1 \) and \(b > 1 \).

Definition

The **greatest common divisor** of integers \(a \) and \(b \), which are not both zero, denoted \(\gcd(a, b) \), is the largest integer that divides both \(a \) and \(b \).

The **least common multiple** of non-zero integers \(a \) and \(b \), denoted \(\text{lcm}(a, b) \), is the smallest positive integer that is a multiple of both \(a \) and \(b \).

\[
\gcd(0, -18) = 18 \quad \text{lcm}(-2, 5) = 10
\]
We can't define everything!
We can't define everything!

We accept the following facts:

- When we add, subtract, or multiply two integers, the result is an integer.
Generally Accepted

We can't define everything!

We accept the following facts:

- When we add, subtract, or multiply two integers, the result is an integer.
- It’s possible to divide any two non-zero numbers and end up with a quotient and remainder.
We can’t define everything!

We accept the following facts:

- When we add, subtract, or multiply two integers, the result is an integer.
- It’s possible to divide any two non-zero numbers and end up with a quotient and remainder.
- We can do algebra. For example, $\frac{4x}{2} = 2x$, and we can solve equations.
Generally Accepted

We can’t define everything!

We accept the following facts:

- When we add, subtract, or multiply two integers, the result is an integer.
- It’s possible to divide any two non-zero numbers and end up with a quotient and remainder.
- We can do algebra. For example, $\frac{4x}{2} = 2x$, and we can solve equations.
- Every natural number greater than 1 has a unique factorization into powers of primes.
Direct Proof of Conditional Statements

How to prove $P \Rightarrow Q$
How to prove $P \Rightarrow Q$

Proposition: If P, then Q.

Proof: Suppose P.

\[\begin{array}{c}
\vdots \\
\therefore \\
\therefore Q.
\end{array} \]

Every step should be completely justified.
How to prove $P \Rightarrow Q$

Proposition: If P, then Q.

Proof: Suppose P.

\[\therefore \]

Therefore Q.

Every step should be completely justified.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Direct Proof

Prove the following:

If $4 | x$, then $\frac{x}{2}$ is even.
Prove the following:

If $4 | x$, then $\frac{x}{2}$ is even.

Proposition: If $4 | x$, then $\frac{x}{2}$ is even.

Proof: Suppose $4 | x$.

Therefore, $\frac{x}{2}$ is even.
Direct Proof

Prove the following:
If $4 \mid x$, then $\frac{x}{2}$ is even.

Proposition: If $4 \mid x$, then $\frac{x}{2}$ is even.

Proof: Suppose $4 \mid x$.

Therefore, $\frac{x}{2} = 2a$ for some $a \in \mathbb{Z}$.

Therefore, $\frac{x}{2}$ is even by the definition of “even”. □
Prove the following:
If $4 \mid x$, then $\frac{x}{2}$ is even.

Proposition: If $4 \mid x$, then $\frac{x}{2}$ is even.

Proof: Suppose $4 \mid x$.
Then by the definition of “divides,” there exists some $b \in \mathbb{Z}$ such that $4b = x$.

Therefore, $\frac{x}{2} = 2a$ for some $a \in \mathbb{Z}$.

Therefore, $\frac{x}{2}$ is even by the definition of “even”. □
Proposition: If $4|x$, then $\frac{x}{2}$ is even.

Proof: Suppose $4|x$.
Then by the definition of “divides,” there exists some $b \in \mathbb{Z}$ such that $4b = x$.
Then $\frac{x}{2} = \frac{4b}{2} = 2b$

Therefore, $\frac{x}{2} = 2a$ for some $a \in \mathbb{Z}$.
Therefore, $\frac{x}{2}$ is even by the definition of “even”. □
Direct Proof

Prove the following:

If $4|\, \! x$, then $\frac{x}{2}$ is even.

Proposition: If $4|\, \! x$, then $\frac{x}{2}$ is even.

Proof: Suppose $4|\, \! x$.

Then by the definition of “divides,” there exists some $b \in \mathbb{Z}$ such that $4b = x$.

Then $\frac{x}{2} = \frac{4b}{2} = 2b$

Therefore, $\frac{x}{2} = 2b$ for some $b \in \mathbb{Z}$.

Therefore, $\frac{x}{2}$ is even by the definition of “even”. □
Prove the following:
If $4|\ x$, then $\frac{x}{2}$ is even.

Proposition: If $4|\ x$, then $\frac{x}{2}$ is even.

Proof: Suppose $4|\ x$.
Then by the definition of “divides,” there exists some $b \in \mathbb{Z}$ such that $4b = x$.
Then $\frac{x}{2} = \frac{4b}{2} = 2b$

Therefore, $\frac{x}{2} = 2b$ for some $b \in \mathbb{Z}$.
Therefore, $\frac{x}{2}$ is even by the definition of “even”.

Prove the following:

If $4|\ x$, then $\frac{x}{2}$ is even.

Proposition: If $4|\ x$, then $\frac{x}{2}$ is even.

Proof: Suppose $4|\ x$.

Then there exists some $a \in \mathbb{Z}$ such that $4a = x$. Then $\frac{x}{2} = 2a$, so $\frac{x}{2}$ is even.
Prove the following:

If x is odd, then $x^2 + 1$ is even.
Prove the following:
If x is odd, then $x^2 + 1$ is even.

Proposition: If x is odd, then $x^2 + 1$ is even.

Proof: Suppose x is odd.

Therefore, $x^2 + 1$ is even.
Direct Proof

Prove the following:

If x *is odd, then* $x^2 + 1$ *is even.*

Proposition: If x is odd, then $x^2 + 1$ is even.

Proof: Suppose x is odd.
Then $x = 2a + 1$ for some integer a.
Then $x^2 + 1 = (2a + 1)^2 + 1 = 4a^2 + 4a + 1 + 1 = 2(2a^2 + 2a + 1)$.
If we define $b = 2a^2 + 2a + 1$, then $b \in \mathbb{Z}$ and $x = 2b$.
Therefore, $x^2 + 1$ is even.
4. Direct Proof

Prove the following:
If x *is even, then for any* $n \in \mathbb{N}$, x^n *is even as well.*

Proposition: If x is even and $n \in \mathbb{N}$, then x^n is even.

Proof: Suppose x is even and $n \in \mathbb{N}$.

Therefore, x^n is even.
Prove the following:

If x *is even, then for any* $n \in \mathbb{N}$, *x^n is even as well.*

Proposition: If x is even and $n \in \mathbb{N}$, then x^n is even.

Proof: Suppose x is even and $n \in \mathbb{N}$.

Then $x = 2a$ for some integer a and $n \geq 1$.

Since $n \geq 1$, $n - 1 \geq 0$, so $x^{n-1} \in \mathbb{Z}$.

Then $x^n = x \left(x^{n-1} \right) = 2a \left(x^{n-1} \right)$.

Let $b = a \left(x^{n-1} \right)$. Then $b \in \mathbb{Z}$ and $x^n = 2b$.

Therefore, x^n is even.
Prove the following:
\textit{If }a \mid b, \textit{ then } a \mid (b^2 + 5a).

\begin{proof}
Suppose \(a \mid b\).

Then there exists some integer \(x\) such that \(b = ax\).

Then \(b^2 + 5a = (ax)^2 + 5a = a(ax^2 + 5)\).

If we let \(y = ax^2 + 5\), then \(y \in \mathbb{Z}\) and \(b = ay\).

Therefore, \(a \mid (b^2 + 5a)\).
\end{proof}
Prove the following:
If $a|b$, *then* $a|(b^2 + 5a)$.

Proposition: If $a|b$, then $a|(b^2 + 5a)$.

Proof: Suppose $a|b$.

Then there exists some integer x such that $b = ax$.

Then $b^2 + 5a = (ax)^2 + 5a = a(ax^2 + 5)$.

If we let $y = ax^2 + 5$, then $y \in \mathbb{Z}$ and $b = ay$.

Therefore, $a|(b^2 + 5a)$.

□
Prove the following:

For any two positive real numbers z and y, if $x \leq y$ then $\sqrt{x} \leq \sqrt{y}$.

Hint: Factor $\sqrt{x^2} - \sqrt{y^2}$. You may assume that dividing both sides of an inequality by a positive number does not change the direction of the inequality.

Proposition:

Proof: Suppose $x, y \in \mathbb{R}$ and $0 < x \leq y$.

Therefore, $\sqrt{x} \leq \sqrt{y}$. \qed
Prove the following:

For any two positive real numbers \(z \) and \(y \), if \(x \leq y \) then \(\sqrt{x} \leq \sqrt{y} \).

Hint: Factor \(\sqrt{x^2} - \sqrt{y^2} \). You may assume that dividing both sides of an inequality by a positive number does not change the direction of the inequality.

Proposition:

Proof: Suppose \(x, y \in \mathbb{R} \) and \(0 < x \leq y \).

Since \(x \leq y \), \(x - y \leq 0 \).

Since \(x \) and \(y \) are nonnegative, \(\sqrt{x^2} = x \) and \(\sqrt{y^2} = y \).

Therefore, \(x - y \leq 0 \) tells us \(\sqrt{x^2} - \sqrt{y^2} \leq 0 \).

Factoring, we see \((\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) \leq 0 \). Since \(\sqrt{x} + \sqrt{y} > 0 \), dividing both sides of this inequality by it yields \(\sqrt{x} - \sqrt{y} \leq 0 \).

Therefore, \(\sqrt{x} \leq \sqrt{y} \). \(\Box \)
Prove the following:

*For any two positive real numbers \(z \) and \(y \), if \(x \leq y \) then \(\sqrt{x} \leq \sqrt{y} \).

Hint: Factor \(\sqrt{x^2} - \sqrt{y^2} \). You may assume that dividing both sides of an inequality by a positive number does not change the direction of the inequality.

Proposition:

Proof: Suppose \(x, y \in \mathbb{R} \) and \(0 < x \leq y \).

Since \(x \leq y \), \(x - y \leq 0 \).

Since \(x \) and \(y \) are nonnegative, \(\sqrt{x^2} = x \) and \(\sqrt{y^2} = y \).

Therefore, \(x - y \leq 0 \) tells us \(\sqrt{x^2} - \sqrt{y^2} \leq 0 \).

Factoring, we see \((\sqrt{x} + \sqrt{y})(\sqrt{x} - \sqrt{y}) \leq 0 \). Since \(\sqrt{x} + \sqrt{y} > 0 \), dividing both sides of this inequality by it yields \(\sqrt{x} - \sqrt{y} \leq 0 \).

Therefore, \(\sqrt{x} \leq \sqrt{y} \).

Corollary: for all nonnegative real \(x \) and \(y \), if \(x \leq y \), then \(\sqrt{x} \leq \sqrt{y} \).
4. Direct Proof

Prove the following:

For any two nonnegative integers \(z \) and \(y \), \(\sqrt{xy} \leq \frac{x + y}{2} \). (That is, the geometric mean is no greater than the arithmetic mean.)

Hint: use the result from the previous slide, \(x \leq y \Rightarrow \sqrt{x} \leq \sqrt{y} \) for all nonnegative real \(x, y \).

Proposition: For any two nonnegative integers \(z \) and \(y \), \(\sqrt{xy} \leq \frac{x + y}{2} \).

Proof: Suppose \(x \) and \(y \) are nonnegative integers.

Therefore, \(\sqrt{xy} \leq \frac{x + y}{2} \). \(\square \)
Direct Proof

Prove the following:

For any two nonnegative integers \(z \) and \(y \), \(\sqrt{xy} \leq \frac{x + y}{2} \). (That is, the geometric mean is no greater than the arithmetic mean.)

Hint: use the result from the previous slide, \(x \leq y \Rightarrow \sqrt{x} \leq \sqrt{y} \) for all nonnegative real \(x, y \).

Proposition: For any two nonnegative integers \(z \) and \(y \), \(\sqrt{xy} \leq \frac{x + y}{2} \).

Proof: Suppose \(x \) and \(y \) are nonnegative integers.

Note \(0 \leq (x - y)^2 \).

Then \(0 \leq x^2 - 2xy + y^2 \), so if we add \(4xy \) to both sides, \(4xy \leq x^2 + 2xy + y^2 = (x + y)^2 \).

Then (using the result from the last slide) \(2\sqrt{xy} \leq x + y \).

Therefore, \(\sqrt{xy} \leq \frac{x + y}{2} \). \([\blacksquare]\)
Prove that $1 + (-1)^n(2n - 1)$ is divisible by 4 for every $n \in \mathbb{Z}$.
Prove that $1 + (-1)^n(2n - 1)$ is divisible by 4 for every $n \in \mathbb{Z}$.

<table>
<thead>
<tr>
<th>n</th>
<th>$1 + (-1)^n(2n - 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>-8</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>-12</td>
</tr>
</tbody>
</table>
Prove that $1 + (-1)^n(2n - 1)$ is divisible by 4 for every $n \in \mathbb{Z}$.

Proposition: For every $n \in \mathbb{Z}$, $1 + (-1)^n(2n - 1)$ is divisible by 4.
Prove that $1 + (-1)^n(2n - 1)$ is divisible by 4 for every $n \in \mathbb{Z}$.

Proposition: For every $n \in \mathbb{Z}$, $1 + (-1)^n(2n - 1)$ is divisible by 4.

Proof:
Prove that $1 + (-1)^n(2n - 1)$ is divisible by 4 for every $n \in \mathbb{Z}$.

Proposition: For every $n \in \mathbb{Z}$, $1 + (-1)^n(2n - 1)$ is divisible by 4.

Proof:
Let n be an integer. Then n is either even or odd.

Suppose n is even.

Suppose n is odd.
Prove that $1 + (-1)^n(2n - 1)$ is divisible by 4 for every $n \in \mathbb{Z}$.

Proposition: For every $n \in \mathbb{Z}$, $1 + (-1)^n(2n - 1)$ is divisible by 4.

Proof:
Let n be an integer. Then n is either even or odd.

Suppose n is even. Then $n = 2a$ for some integer a, and $(-1)^n = 1$.
So,

$$1 + (-1)^n(2n - 1) = 1 + 2(2a) - 1 = 4a$$

and thus the expression is divisible by 4.

Suppose n is odd.
Prove that $1 + (-1)^n(2n - 1)$ is divisible by 4 for every $n \in \mathbb{Z}$.

Proposition: For every $n \in \mathbb{Z}$, $1 + (-1)^n(2n - 1)$ is divisible by 4.

Proof:
Let n be an integer. Then n is either even or odd.

Suppose n is even. Then $n = 2a$ for some integer a, and $(-1)^n = 1$.
So,

$$1 + (-1)^n(2n - 1) = 1 + 2(2a) - 1 = 4a$$

and thus the expression is divisible by 4.

Suppose n is odd. Then $n = 2a + 1$ for some integer a, and $(-1)^n = -1$.
So,

$$1 + (-1)^n(2n - 1) = 1 - 2(2a + 1) + 1 = -4a = 4(-a)$$

and thus the expression is divisible by 4. ∎
Cases

Proposition: If \(a \in \mathbb{Z} \) is a multiple of 4, then \(a = 1 + (-1)^n(2n - 1) \) for some \(n \in \mathbb{N} \).
Proposition: If \(a \in \mathbb{Z} \) is a multiple of 4, then \(a = 1 + (-1)^n(2n - 1) \) for some \(n \in \mathbb{N} \).
Cases

Proposition: If $a \in \mathbb{Z}$ is a multiple of 4, then $a = 1 + (-1)^n(2n - 1)$ for some $n \in \mathbb{N}$.

Proof: Suppose $a \in \mathbb{Z}$ is a multiple of 4. Then $a = 4b$ for some integer b.

Suppose $b \geq 0$. In this case, let $n = 2b$. Then

$$1 + (-1)^n(2n - 1) = 1 + (2(2b)) - 1) = 4b = a.$$

Suppose $b < 0$. In this case, let $n = 1 - 2b$. Note $1 - 2b > 0$, since $b < 0$, so $n \in \mathbb{N}$. Also, n is odd, so:

$$1 + (-1)^n(2n - 1) = 1 + (-1)(2(1 - 2b)) - 1) = 1 - (2 - 4b - 1) = 4b = a.$$

\square
“Without Loss of Generality”

Proposition: Given any three (not necessarily distinct) positive numbers, it is possible to choose two so that their sum is strictly greater than the third.
Proposition: Given any three (not necessarily distinct) positive numbers, it is possible to choose two so that their sum is strictly greater than the third.

Example: given 1, 1, 7.8:
“Without Loss of Generality”

Proposition: Given any three (not necessarily distinct) positive numbers, it is possible to choose two so that their sum is strictly greater than the third.

Example: given 1, 1, 7.8: 1 < 1 + 7.8
“Without Loss of Generality”

Proposition: Given any three (not necessarily distinct) positive numbers, it is possible to choose two so that their sum is strictly greater than the third.

Example: given 1, 1, 7.8: \[1 < 1 + 7.8 \]
Example: given 5, 3, 8:
Proposition: Given any three (not necessarily distinct) positive numbers, it is possible to choose two so that their sum is strictly greater than the third.

Example: given 1, 1, 7.8: 1 < 1 + 7.8
Example: given 5, 3, 8: 3 < 5 + 8, and also 5 < 3 + 8
Proposition: Given any three (not necessarily distinct) positive numbers, it is possible to choose two so that their sum is strictly greater than the third.

Example: given 1, 1, 7.8: \(1 < 1 + 7.8\)
Example: given 5, 3, 8: \(3 < 5 + 8\), and also \(5 < 3 + 8\)

Proof: Let \(a, b, \) and \(c\) be positive numbers, and WLOG ("without loss of generality") let \(a \leq b\).
Then \(b + c \geq a + c > a\) (since \(c > 0\)).
Triangle Inequality

Proposition: \(\forall x, y \in \mathbb{Z}, |x + y| \leq |x| + |y| \)
Triangle Inequality

Proposition: \(\forall x, y \in \mathbb{Z}, |x + y| \leq |x| + |y| \)

Example: \(|1 + 1| \leq 1 + 1 \)
Triangle Inequality

Proposition: $\forall x, y \in \mathbb{Z}, |x + y| \leq |x| + |y|$

Example: $|1 + 1| \leq 1 + 1$
Example: $|2 - 1| \leq 2 + 1$
Proposition: \(\forall x, y \in \mathbb{Z}, |x + y| \leq |x| + |y| \)

Example: \(|1 + 1| \leq 1 + 1 \)
Example: \(|2 - 1| \leq 2 + 1 \)

Proof:
Suppose \(x, y \geq 0 \).

Suppose \(x, y < 0 \).

Suppose \(x \geq 0, y < 0 \).
Triangle Inequality

Proposition: $\forall x, y \in \mathbb{Z}, |x + y| \leq |x| + |y|$

Example: $|1 + 1| \leq 1 + 1$

Example: $|2 - 1| \leq 2 + 1$

Proof:

Suppose $x, y \geq 0$.

Suppose $x, y < 0$.

Suppose $x \geq 0, y < 0$. **Then** $|x| \geq |y|$ or $|x| < |y|$.
More Examples

Proposition: \(\forall n \in \mathbb{N}, n^2 - 3n + 9 \) is odd.

Proposition: Suppose \(\gcd(a, b) > 1 \) and \(b \) is prime. Then \(b = \gcd(a, b) \).

Proposition: For every \(a \in \mathbb{Z} \), if \(a^2 \) | \(a \), then \(a^2 = |a| \).

Proposition: Every odd integer is the difference of two squares.