Introduction

From the Book:

In proving theorems, we apply logic to information that is considered obviously true (such as “Any two points determine exactly one line.”) or is already known to be true (e.g., the Pythagorean theorem). If our logic is correct, then anything we deduce from such information will also be true (or at least as true as the “obviously true” information we began with).
From the Book:

In proving theorems, we apply logic to information that is considered obviously true (such as “Any two points determine exactly one line.”) or is already known to be true (e.g., the Pythagorean theorem). If our logic is correct, then anything we deduce from such information will also be true (or at least as true as the “obviously true” information we began with).
From the Book:

In proving theorems, we apply logic to information that is considered obviously true (such as “Any two points determine exactly one line.”) or is already known to be true (e.g., the Pythagorean theorem). If our logic is correct, then anything we deduce from such information will also be true (or at least as true as the “obviously true” information we began with).

Example:
If you are the prime minister, then you are human.
Justin Trudeau is the prime minister.
From the Book:

In proving theorems, we apply logic to information that is considered obviously true (such as “Any two points determine exactly one line.”) or is already known to be true (e.g., the Pythagorean theorem). If our logic is correct, then anything we deduce from such information will also be true (or at least as true as the “obviously true” information we began with).

Example:

If you are the prime minister, then you are human.

Justin Trudeau is the prime minister.

Therefore, Justin Trudeau is human.
From the Book:

In proving theorems, we apply logic to information that is considered obviously true (such as “Any two points determine exactly one line.”) or is already known to be true (e.g., the Pythagorean theorem). If our logic is correct, then anything we deduce from such information will also be true (or at least as true as the “obviously true” information we began with).
Introduction

From the Book:

In proving theorems, we apply logic to information that is considered obviously true (such as “Any two points determine exactly one line.”) or is already known to be true (e.g., the Pythagorean theorem). If our logic is correct, then anything we deduce from such information will also be true (or at least as true as the “obviously true” information we began with).

Example:
If you are the prime minister, then you are human.
Justin Trudeau is the prime minister.
Therefore, Justin Trudeau is human.
I am not prime minister. Am I human?

Example:
No mammal can fly.
Introduction

From the Book:

In proving theorems, we apply logic to information that is considered obviously true (such as “Any two points determine exactly one line.”) or is already known to be true (e.g., the Pythagorean theorem). If our logic is correct, then anything we deduce from such information will also be true (or at least as true as the “obviously true” information we began with).

Example:

If you are the prime minister, then you are human.
Justin Trudeau is the prime minister.
Therefore, Justin Trudeau is human.
I am not prime minister. Am I human?

Example:

No mammal can fly.
A pig is a mammal.
From the Book:

In proving theorems, we apply logic to information that is considered obviously true (such as “Any two points determine exactly one line.”) or is already known to be true (e.g., the Pythagorean theorem). If our logic is correct, then anything we deduce from such information will also be true (or at least as true as the “obviously true” information we began with).

Example:

If you are the prime minister, then you are human.
Justin Trudeau is the prime minister.
Therefore, Justin Trudeau is human.
I am not prime minister. Am I human?

Example:

No mammal can fly.
A pig is a mammal.
Therefore, a pig cannot fly. (True)
Introduction

From the Book:

In proving theorems, we apply logic to information that is considered obviously true (such as “Any two points determine exactly one line.”) or is already known to be true (e.g., the Pythagorean theorem). If our logic is correct, then anything we deduce from such information will also be true (or at least as true as the “obviously true” information we began with).

Example:
If you are the prime minister, then you are human.
Justin Trudeau is the prime minister.
Therefore, Justin Trudeau is human.
I am not prime minister. Am I human?

Example:
No mammal can fly.
A pig is a mammal.
Therefore, a pig cannot fly. (True)
A bat is a mammal, therefore a bat cannot fly. (False)
What Are Statements?

Definition

A **statement** is a sentence or a mathematical expression that is either definitely true or definitely false.
What Are Statements?

Definition
A **statement** is a sentence or a mathematical expression that is either definitely true or definitely false.

\[6 \times 3 = 18 \]
\[6 \times 3 \]

For every finite set \(A \), \(|\mathcal{P}(A)| = 2^{|A|} \).

For every real number \(x \), \(\sqrt{x^2} = x \).

Let \(x \) be a real number.

Multiply by the conjugate.
What Are Statements?

Definition

A **statement** is a sentence or a mathematical expression that is either definitely true or definitely false.

- \(6 \times 3 = 18 \)
 - statement (true)
- \(6 \times 3 \)
- For every finite set \(A \), \(|\mathcal{P}(A)| = 2^{|A|}\).
- For every real number \(x \), \(\sqrt{x^2} = x \).
- Let \(x \) be a real number.
- Multiply by the conjugate.
What Are Statements?

Definition

A **statement** is a sentence or a mathematical expression that is either definitely true or definitely false.

- $6 \times 3 = 18$
 - statement (true)
- 6×3
 - not a statement

For every finite set A, $|\mathcal{P}(A)| = 2^{|A|}$.

For every real number x, $\sqrt{x^2} = x$.

Let x be a real number.

Multiply by the conjugate.
What Are Statements?

Definition

A **statement** is a sentence or a mathematical expression that is either definitely true or definitely false.

- $6 \times 3 = 18$
 statement (true)
- 6×3
 not a statement
- For every finite set A, $|\mathcal{P}(A)| = 2^{|A|}$.
 statement (true)
- For every real number x, $\sqrt{x^2} = x$.
 statement (true)
- Let x be a real number.
- Multiply by the conjugate.
What Are Statements?

Definition
A **statement** is a sentence or a mathematical expression that is either definitely true or definitely false.

- $6 \times 3 = 18$
 statement (true)
- 6×3
 not a statement
- For every finite set A, $|\mathcal{P}(A)| = 2^{|A|}$.
 statement (true)
- For every real number x, $\sqrt{x^2} = x$.
 statement (false)
- Let x be a real number.
- Multiply by the conjugate.
What Are Statements?

Definition

A **statement** is a sentence or a mathematical expression that is either definitely true or definitely false.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6 \times 3 = 18$</td>
<td>statement (true)</td>
</tr>
<tr>
<td>6×3</td>
<td>not a statement</td>
</tr>
<tr>
<td>For every finite set A, $</td>
<td>\mathcal{P}(A)</td>
</tr>
<tr>
<td>For every real number x, $\sqrt{x^2} = x$</td>
<td>statement (false)</td>
</tr>
<tr>
<td>Let x be a real number. Multiply by the conjugate.</td>
<td>not a statement</td>
</tr>
</tbody>
</table>
What Are Statements?

Definition

A **statement** is a sentence or a mathematical expression that is either definitely true or definitely false.

\[6 \times 3 = 18 \quad \text{statement (true)} \]
\[6 \times 3 \quad \text{not a statement} \]

For every finite set \(A \), \(|\mathcal{P}(A)| = 2^{|A|} \).

\[\text{statement (true)} \]

For every real number \(x \), \(\sqrt{x^2} = x \).

\[\text{statement (false)} \]

Let \(x \) be a real number.

\[\text{not a statement} \]

Multiply by the conjugate.

\[\text{not a statement} \]
What Are Statements?

Definition
A **statement** is a sentence or a mathematical expression that is either definitely true or definitely false.

6 × 3 = 18 statement (true)
6 × 3 not a statement

For every finite set A, $|\mathcal{P}(A)| = 2^{|A|}$. statement (true)

For every real number x, $\sqrt{x^2} = x$. statement (false)

Let x be a real number. statement (false)
Multiply by the conjugate. statement (false)

We often give statements single-letter names, as we do for variables. statement (true)
P: $6 \times 3 = 18$ statement (true)
We don’t always know whether a statement is true or false.

Definition

Open sentence: truth depends on a variable.

Example: \(x \) is prime.

This is not a statement, at least not until we know what \(x \) is.
We don’t always know whether a statement is true or false.

Definition

Open sentence: truth depends on a variable.

Example: x is prime.

This is not a statement, at least not until we know what x is.

Goldbach Conjecture

Every even integer greater than 2 is a sum of two prime numbers.

$4 = 2 + 2$, $6 = 3 + 3$, $8 = 3 + 5$, $20 = 7 + 13$
We don’t always know whether a statement is true or false.

Definition

Open sentence: truth depends on a variable.

Example: \(x \) is prime.

This is not a statement, at least not until we know what \(x \) is.

Goldbach Conjecture

Every even integer greater than 2 is a sum of two prime numbers.

\[
4 = 2 + 2, \quad 6 = 3 + 3, \quad 8 = 3 + 5, \quad 20 = 7 + 13
\]

Holds through \(4 \times 10^{18} \) (Wikipedia)
2. Logic

2.1 Statements

2.2 And, Or, Not

2.3 Conditional Statements

2.4 Biconditional Statements

2.5 Truth Tables for Statements

2.6 Logical Equivalence

2.7 Quantifiers

2.8 More on Conditional Statements

2.9 Translating English to Symbolic Logic

2.10 Negating Statements

2.11 Logical Inference

We don’t always know whether a statement is true or false.

Definition

Open sentence: truth depends on a variable.

Example: \(x \) is prime.

This is not a statement, at least not until we know what \(x \) is.

Goldbach Conjecture

Every even integer greater than 2 is a sum of two prime numbers.

\[
4 = 2 + 2, \quad 6 = 3 + 3, \quad 8 = 3 + 5, \quad 20 = 7 + 13
\]

Holds through \(4 \times 10^{18} \) (Wikipedia)

The Goldbach Conjecture is a statement. (We don’t know whether it is true or false, but we know it is one of them!)
And + Truth Tables

Definition

For statements P and Q, the statement "P and Q", written $P \land Q$, is true if and only if both P and Q are true.
Definition

For statements P and Q, the statement "P and Q", written $P \land Q$, is true if and only if both P and Q are true.

P: “I washed the dishes and cleaned the sink.”
And + Truth Tables

Definition

For statements \(P \) and \(Q \), the statement ” \(P \) and \(Q \)”, written \(P \land Q \), is true if and only if both \(P \) and \(Q \) are true.

\[
P: \text{“I washed the dishes and cleaned the sink.”}
\]
\[
Q: \text{“I washed the dishes.”}
\]
\[
R: \text{“I cleaned the sink.”}
\]
\[
P = Q \land R
\]
And + Truth Tables

Definition

For statements P and Q, the statement "P and Q", written $P \land Q$, is true if and only if both P and Q are true.

P: "I washed the dishes and cleaned the sink."

Q: "I washed the dishes."

R: "I cleaned the sink."

$P = Q \land R$

If one (or both) of Q or R is false, then P is false.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>$Q \land R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
And + Truth Tables

Definition

For statements P and Q, the statement "P and Q", written $P \land Q$, is true if and only if both P and Q are true.

P: “I washed the dishes and cleaned the sink.”

Q: “I washed the dishes.”

R: “I cleaned the sink.”

$P = Q \land R$

If one (or both) of Q or R is false, then P is false.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>$Q \land R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
And + Truth Tables

Definition

For statements P and Q, the statement "P and Q", written \(P \land Q \), is true if and only if both P and Q are true.

\[P: \text{"I washed the dishes and cleaned the sink."} \]
\[Q: \text{"I washed the dishes."} \]
\[R: \text{"I cleaned the sink."} \]
\[P = Q \land R \]

If one (or both) of Q or R is false, then P is false.

\[
\begin{array}{|c|c|c|}
\hline
Q & R & Q \land R \\
\hline
T & T & T \\
T & F & F \\
F & T & \\
F & F & \\
\hline
\end{array}
\]
And + Truth Tables

Definition

For statements P and Q, the statement "P and Q", written $P \land Q$, is true if and only if both P and Q are true.

P: “I washed the dishes and cleaned the sink.”

Q: “I washed the dishes.”

R: “I cleaned the sink.”

$P = Q \land R$

If one (or both) of Q or R is false, then P is false.

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>$Q \land R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
And + Truth Tables

Definition

For statements P and Q, the statement "P and Q", written $P \land Q$, is true if and only if both P and Q are true.

\[
\begin{array}{c|c|c}
Q & R & Q \land R \\
T & T & T \\
T & F & F \\
F & T & F \\
F & F & F \\
\end{array}
\]

P: “I washed the dishes and cleaned the sink.”

Q: “I washed the dishes.”

R: “I cleaned the sink.”

$P = Q \land R$

If one (or both) of Q or R is false, then P is false.
Or

Definition

For statements P and Q, the statement “P or Q”, written $P \lor Q$, is true if and only if one or both of P and Q are true.
Or

Definition

For statements P and Q, the statement “P or Q”, written $P \lor Q$, is true if and only if one or both of P and Q are true.

This is different from standard English usage.

If a mathematician says “take a chocolate cookie or a peanut cookie,” you can take one of each, and you may take one cookie, but you must take a cookie.
Definition

For statements P and Q, the statement “P or Q”, written $P \lor Q$, is true if and only if one or both of P and Q are true.

This is different from standard English usage. If a mathematician says “take a chocolate cookie or a peanut cookie,” you can take one of each, and you may take one cookie, but you must take a cookie.

True or False: 3 is prime or 5 is prime.
True or False: 3 is prime or 10 is prime.
True or False: 3 is prime or some lions have green eyes.
True or False: 10 is prime or 20 is prime.
Or

Definition

For statements P and Q, the statement “P or Q”, written $P \lor Q$, is true if and only if one or both of P and Q are true.

This is different from standard English usage.
If a mathematician says “take a chocolate cookie or a peanut cookie,” you can take one of each, and you may take one cookie, but you must take a cookie.

True or False: 3 is prime or 5 is prime. True.
True or False: 3 is prime or 10 is prime. False.
True or False: 3 is prime or some lions have green eyes. True.
True or False: 10 is prime or 20 is prime.
2. Logic

2.1 Statements

2.2 And, Or, Not

2.3 Conditional Statements

2.4 Biconditional Statements

2.5 Truth Tables for Statements

2.6 Logical Equivalence

2.7 Quantifiers

2.8 More on Conditional Statements

2.9 Translating English to Symbolic Logic

2.10 Negating Statements

2.11 Logical Inference

Definition

For statements P and Q, the statement “P or Q”, written $P \lor Q$, is true if and only if one or both of P and Q are true.

This is different from standard English usage.

If a mathematician says “take a chocolate cookie or a peanut cookie,” you can take one of each, and you may take one cookie, but you must take a cookie.

True or False: 3 is prime or 5 is prime. \quad \text{True.}

True or False: 3 is prime or 10 is prime. \quad \text{True.}

True or False: 3 is prime or some lions have green eyes.

True or False: 10 is prime or 20 is prime.
2.Logic
2.1 Statements
2.2 And, Or, Not
2.3 Conditional Statements
2.4 Biconditional Statements
2.5 Truth Tables for Statements
2.6 Logical Equivalence
2.7 Quantifiers
2.8 More on Conditional Statements
2.9 Translating English to Symbolic Logic
2.10 Negating Statements
2.11 Logical Inference

Or

Definition
For statements P and Q, the statement “P or Q”, written $P \lor Q$, is true if and only if one or both of P and Q are true.

This is different from standard English usage.
If a mathematician says “take a chocolate cookie or a peanut cookie,” you can take one of each, and you may take one cookie, but you must take a cookie.

True or False: 3 is prime or 5 is prime. True.
True or False: 3 is prime or 10 is prime. True.
True or False: 3 is prime or some lions have green eyes. True.
True or False: 10 is prime or 20 is prime.
Definition

For statements \(P \) and \(Q \), the statement “\(P \) or \(Q \)”, written \(P \lor Q \), is true if and only if one or both of \(P \) and \(Q \) are true.

This is different from standard English usage.

If a mathematician says “take a chocolate cookie or a peanut cookie,” you can take one of each, and you may take one cookie, but you must take a cookie.

- True or False: 3 is prime or 5 is prime. \(\text{True.} \)
- True or False: 3 is prime or 10 is prime. \(\text{True.} \)
- True or False: 3 is prime or some lions have green eyes. \(\text{True.} \)
- True or False: 10 is prime or 20 is prime. \(\text{False.} \)
Or, Not

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>P \lor Q</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Or, Not

2. Logic
2.1 Statements
2.2 And, Or, Not
2.3 Conditional Statements
2.4 Biconditional Statements
2.5 Truth Tables for Statements
2.6 Logical Equivalence
2.7 Quantifiers
2.8 More on Conditional Statements
2.9 Translating English to Symbolic Logic
2.10 Negating Statements
2.11 Logical Inference

What if we want to express "P or Q, but not both, are true." That is:

\[P \lor Q \Rightarrow \neg (P \land Q) \]

or is true, and and is false.

Definition
For a statement \(P \), the statement "not \(P \)", written \(\neg P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as "\(\neg P \)."

\[
\begin{array}{c|c|c}
 P & Q & P \lor Q \\
 T & T & T \\
 T & F & T \\
 F & T & T \\
 F & F & F \\
\end{array}
\]
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
What if we want to express “P or Q, but not both, are true.”
2. Logic

2.1 Statements

2.2 And, Or, Not

2.3 Conditional Statements

2.4 Biconditional Statements

2.5 Truth Tables for Statements

2.6 Logical Equivalence

2.7 Quantifiers

2.8 More on Conditional Statements

2.9 Translating English to Symbolic Logic

2.10 Negating Statements

2.11 Logical Inference

Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”

That is: $P \lor Q$ is true, and $P \land Q$ is false.

or

and
What if we want to express “P or Q, but not both, are true.”
That is: $P \lor Q$ is true, and $P \land Q$ is false.

Definition
For a statement P, the statement “not P”, written $\sim P$, is true when P is false, and false when P is true. (You might also see this written as “$\neg P$”.)
Or, Not

What if we want to express “P or Q, but not both, are true.”

That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Or, Not

2. Logic
2.1 Statements
2.2 And, Or, Not
2.3 Conditional Statements
2.4 Biconditional Statements
2.5 Truth Tables for Statements
2.6 Logical Equivalence
2.7 Quantifiers
2.8 More on Conditional Statements
2.9 Translating English to Symbolic Logic
2.10 Negating Statements
2.11 Logical Inference

2.2 And, Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”

That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>((P \lor Q) \land \sim (P \land Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
What if we want to express “P or Q, but not both, are true.”
That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)".)
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”
That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)
2. Logic

2.1 Statements

2.2 And, Or, Not

2.3 Conditional Statements

2.4 Biconditional Statements

2.5 Truth Tables for Statements

2.6 Logical Equivalence

2.7 Quantifiers

2.8 More on Conditional Statements

2.9 Translating English to Symbolic Logic

2.10 Negating Statements

2.11 Logical Inference

Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”

That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>P ∧ Q</th>
<th>~ (P ∧ Q)</th>
<th>(P ∨ Q) ∧ ~ (P ∧ Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.” That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)” , written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”
That is: $P \lor Q$ is true, and $P \land Q$ is false.

Definition
For a statement P, the statement “not P”, written $\sim P$, is true when P is false, and false when P is true. (You might also see this written as “$\neg P$”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>P ∧ Q</th>
<th>$\sim (P \land Q)$</th>
<th>$(P \lor Q) \land \sim (P \land Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
What if we want to express “P or Q, but not both, are true.”
That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition
For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)
Or, Not

What if we want to express “P or Q, but not both, are true.” That is: $P \lor Q$ is true, and $P \land Q$ is false.

Definition

For a statement P, the statement “not P”, written $\neg P$, is true when P is false, and false when P is true. (You might also see this written as “$\neg P$”.)
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”
That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition
For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express "P or Q, but not both, are true.”
That is: \[P \lor Q \] is true, and \[P \land Q \] is false.

Definition

For a statement \(P \), the statement "not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>P ∧ Q</th>
<th>(\sim (P \land Q))</th>
<th>((P \lor Q)\land \sim(P \land Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”

That is: $P \lor Q$ is true, and $P \land Q$ is false.

Definition

For a statement P, the statement “not P”, written $\sim P$, is true when P is false, and false when P is true. (You might also see this written as “$\neg P$”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
<th>$P \land Q$</th>
<th>$\sim (P \land Q)$</th>
<th>$(P \lor Q) \land \sim (P \land Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Or, Not

What if we want to express “P or Q, but not both, are true.”
That is: \(P \lor \neg P \) is true, and \(P \land Q \) is false.

Definition
For a statement \(P \), the statement “not \(P \)”, written \(\neg P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”

That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
<th>P \land Q</th>
<th>\sim (P \land Q)</th>
<th>(P \lor Q) \land \sim (P \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
2. Logic

2.1 Statements

2.2 And, Or, Not

2.3 Conditional Statements

2.4 Biconditional Statements

2.5 Truth Tables for Statements

2.6 Logical Equivalence

2.7 Quantifiers

2.8 More on Conditional Statements

2.9 Translating English to Symbolic Logic

2.10 Negating Statements

2.11 Logical Inference

Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”
That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
<th>P \land Q</th>
<th>\sim (P \land Q)</th>
<th>(P \lor Q) \land \sim (P \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”
That is: $P \lor Q$ is true, and $P \land Q$ is false.

Definition
For a statement P, the statement “not P”, written $\sim P$, is true when P is false, and false when P is true. (You might also see this written as “$\neg P$”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>P ∧ Q</th>
<th>$\sim (P \land Q)$</th>
<th>$(P \lor Q) \land \sim (P \land Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”
That is: \(P ∨ Q \) is true, and \(P ∧ Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(∼ P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>P ∧ Q</th>
<th>∼ (P ∧ Q)</th>
<th>(P ∨ Q) ∧ ∼ (P ∧ Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.” That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”
That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>P ∧ Q</th>
<th>(\sim (P \land Q))</th>
<th>((P \lor Q) \land \sim (P \land Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Or, Not

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

What if we want to express “P or Q, but not both, are true.”
That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
<th>P ∧ Q</th>
<th>(\sim (P \land Q))</th>
<th>((P \lor Q) \land \sim (P \land Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
What if we want to express “P or Q, but not both, are true.”
That is: \(P \lor Q \) is true, and \(P \land Q \) is false.

Definition

For a statement \(P \), the statement “not \(P \)”, written \(\sim P \), is true when \(P \) is false, and false when \(P \) is true. (You might also see this written as “\(\neg P \)”.)
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement "If P then Q," written $P \Rightarrow Q$, is true unless P is true and Q is false.

$P \Rightarrow Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement “If P then Q,” written $P \implies Q$, is true unless P is true and Q is false.

$P \implies Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement "If P then Q,” written $P \implies Q$, is true unless P is true and Q is false.

$P \implies Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>$P \implies Q$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition
For statements P and Q, the statement "If P then Q," written $P \implies Q$, is true unless P is true and Q is false.

$P \implies Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement "If P then Q," written $P \Rightarrow Q$, is true unless P is true and Q is false.

$P \Rightarrow Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9

Q: n is divisible by 3.

$n = 27$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement "If P then Q," written $P \Rightarrow Q$, is true unless P is true and Q is false.

$P \Rightarrow Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement "If P then Q," written $P \Rightarrow Q$, is true unless P is true and Q is false.

$P \Rightarrow Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$
$n = 10$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement “If P then Q,” written $P \implies Q$, is true unless P is true and Q is false.

$P \implies Q$ can therefore also be written as $\neg P \lor Q$, or $\neg (P \land \neg Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$
$n = 10$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement “If P then Q,” written $P \Rightarrow Q$, is true unless P is true and Q is false.

$P \Rightarrow Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$
$n = 10$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$P \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements (“if-then”, implications)

Definition

For statements P and Q, the statement “If P then Q,” written $P \implies Q$, is true *unless* P is true and Q is false.

$P \implies Q$ can therefore also be written as $\neg P \lor Q$, or $\neg (P \land \neg Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$
$n = 10$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement “If P then Q,” written $P \Rightarrow Q$, is true unless P is true and Q is false.

$P \Rightarrow Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

\[
\begin{array}{ccc}
P & Q & P \Rightarrow Q \\
T & T & T \\
T & F & F \\
F & T & T \\
F & F & T \\
\end{array}
\]
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement “If P then Q,” written $P \implies Q$, is true unless P is true and Q is false. $P \implies Q$ can therefore also be written as $\neg P \lor Q$, or $\neg (P \land \neg Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$
$n = 10$
$n = 6$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement “If P then Q,” written $P \Rightarrow Q$, is true unless P is true and Q is false.

$P \Rightarrow Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

\[
\begin{array}{|c|c|c|}
\hline
P & Q & P \Rightarrow Q \\
\hline
T & T & T \\
F & F & T \\
F & T & T \\
\hline
\end{array}
\]

$n = 27$

$n = 10$

$n = 6$
2. Logic
2.1 Statements
2.2 And, Or, Not
2.3 Conditional Statements
2.4 Biconditional Statements
2.5 Truth Tables for Statements
2.6 Logical Equivalence
2.7 Quantifiers
2.8 More on Conditional Statements
2.9 Translating English to Symbolic Logic
2.10 Negating Statements
2.11 Logical Inference

Conditional Statements ("if-then", implications)

Definition

For statements \(P \) and \(Q \), the statement “If \(P \) then \(Q \),” written \(P \implies Q \), is true unless \(P \) is true and \(Q \) is false.

\(P \implies Q \) can therefore also be written as \(\sim P \lor Q \), or \(\sim (P \land \sim Q) \).

\(P: n \) is divisible by 9
\(Q: n \) is divisible by 3.

\[n = 27 \]
\[n = 10 \]
\[n = 6 \]

\[
\begin{array}{ccc}
\text{P} & \text{Q} & P \implies Q \\
\text{T} & \text{T} & \text{T} \\
\text{F} & \text{F} & \text{T} \\
\text{F} & \text{T} & \text{T} \\
\end{array}
\]
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement "If P then Q," written $P \Rightarrow Q$, is true unless P is true and Q is false.

$P \Rightarrow Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$
$n = 10$
$n = 6$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$P \Rightarrow Q$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement “If P then Q,” written $P \implies Q$, is true unless P is true and Q is false. $P \implies Q$ can therefore also be written as $\neg P \lor Q$, or $\neg (P \land \neg Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

<table>
<thead>
<tr>
<th>n</th>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
<th>$Q \implies P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
2. Logic
2.1 Statements
2.2 And, Or, Not
2.3 Conditional Statements
2.4 Biconditional Statements
2.5 Truth Tables for Statements
2.6 Logical Equivalence
2.7 Quantifiers
2.8 More on Conditional Statements
2.9 Translating English to Symbolic Logic
2.10 Negating Statements
2.11 Logical Inference

Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement “If P then Q,” written $P \Rightarrow Q$, is true unless P is true and Q is false.

$P \Rightarrow Q$ can therefore also be written as $\sim P \lor Q$, or $\sim (P \land \sim Q)$.

P: n is divisible by 9
Q: n is divisible by 3.

$n = 27$
$n = 10$
$n = 6$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \Rightarrow Q$</th>
<th>$Q \Rightarrow P$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Conditional Statements ("if-then", implications)

Definition

For statements P and Q, the statement “If P then Q,” written \(P \Rightarrow Q \), is true unless P is true and Q is false.

\(P \Rightarrow Q \) can therefore also be written as \(\sim P \lor Q \), or \(\sim (P \land \sim Q) \).

\[
\begin{array}{c|c|c|c}
P & Q & P \Rightarrow Q & Q \Rightarrow P \\
\hline
T & T & T & T \\
T & F & T & F \\
F & F & T & T \\
F & T & T & F \\
\end{array}
\]

\(P: n \) is divisible by 9

\(Q: n \) is divisible by 3.

- \(n = 27 \)
- \(n = 10 \)
- \(n = 6 \)
Conditional Example

\(P \): \(f(x) \) is a continuous function on \([a, b]\).
\(Q \): \(N \) is a number strictly between \(f(a) \) and \(f(b) \).
\(R \): There exists some number \(c \in (a, b) \) such that \(f(c) = N \).
Conditional Example

\[P: f(x) \text{ is a continuous function on } [a, b]. \]
\[Q: N \text{ is a number strictly between } f(a) \text{ and } f(b). \]
\[R: \text{There exists some number } c \in (a, b) \text{ such that } f(c) = N. \]

Intermediate Value Theorem

\[(P \land Q) \Rightarrow R \]
Conditional Example

P: $f(x)$ is a continuous function on $[a, b]$.
Q: N is a number strictly between $f(a)$ and $f(b)$.
R: There exists some number $c \in (a, b)$ such that $f(c) = N$.

Intermediate Value Theorem

$$(P \land Q) \Rightarrow R$$

\[f(x) = \frac{1}{x^2}\]
\[a = -10, \ b = 1\]
\[N = 4\]

\[f(x) = \frac{1}{x^2}\]
\[a = -1, \ b = 1\]
\[N = \frac{1}{4}\]

\[f(x) = \frac{1}{x^2}\]
\[a = 1, \ b = 10\]
\[N = \frac{1}{4}\]
Conditional Example

P: $f(x)$ is a continuous function on $[a, b]$.

Q: N is a number strictly between $f(a)$ and $f(b)$.

R: There exists some number $c \in (a, b)$ such that $f(c) = N$.

Intermediate Value Theorem

$$(P \land Q) \Rightarrow R$$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>$(P \land Q) \Rightarrow R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $f(x) = \frac{1}{x^2}$

 $a = -10, \ b = 1$

 $N = 4$

- $f(x) = \frac{1}{x^2}$

 $a = -1, \ b = 1$

 $N = \frac{1}{4}$

- $f(x) = \frac{1}{x^2}$

 $a = 1, \ b = 10$

 $N = \frac{1}{4}$

2. Logic

2.1 Statements

2.2 And, Or, Not

2.3 Conditional Statements

2.4 Biconditional Statements

2.5 Truth Tables for Statements

2.6 Logical Equivalence

2.7 Quantifiers

2.8 More on Conditional Statements

2.9 Translating English to Symbolic Logic

2.10 Negating Statements

2.11 Logical Inference
Conditional Example

\(P: \) \(f(x) \) is a continuous function on \([a, b]\).
\(Q: \) \(N \) is a number strictly between \(f(a) \) and \(f(b) \).
\(R: \) There exists some number \(c \in (a, b) \) such that \(f(c) = N \).

Intermediate Value Theorem

\[(P \land Q) \Rightarrow R\]

\[f(x) = \frac{1}{x^2}\]
\(a = -10, \ b = 1\)
\(N = 4\)

\[f(x) = \frac{1}{x^2}\]
\(a = -1, \ b = 1\)
\(N = \frac{1}{4}\)

\[f(x) = \frac{1}{x^2}\]
\(a = 1, \ b = 10\)
\(N = \frac{1}{4}\)
Conditional Example

\(P: f(x) \) is a continuous function on \([a, b]\).
\(Q: N \) is a number strictly between \(f(a) \) and \(f(b) \).
\(R: \) There exists some number \(c \in (a, b) \) such that \(f(c) = N \).

Intermediate Value Theorem

\((P \land Q) \Rightarrow R\)

\[
\begin{align*}
f(x) &= \frac{1}{x^2} \\
a &= -10, \ b = 1 \\
N &= 4
\end{align*}
\]

\[
\begin{align*}
f(x) &= \frac{1}{x^2} \\
a &= -1, \ b = 1 \\
N &= \frac{1}{4}
\end{align*}
\]

\[
\begin{align*}
f(x) &= \frac{1}{x^2} \\
a &= 1, \ b = 10 \\
N &= \frac{1}{4}
\end{align*}
\]
Conditional Example

\(P: \) \(f(x) \) is a continuous function on \([a, b] \).
\(Q: \) \(N \) is a number strictly between \(f(a) \) and \(f(b) \).
\(R: \) There exists some number \(c \in (a, b) \) such that \(f(c) = N \).

Intermediate Value Theorem

\((P \land Q) \Rightarrow R \)

\[
f(x) = \frac{1}{x^2}
\]
\(a = -10, \ b = 1 \)
\(N = 4 \)

\[
f(x) = \frac{1}{x^2}
\]
\(a = -1, \ b = 1 \)
\(N = \frac{1}{4} \)

\[
f(x) = \frac{1}{x^2}
\]
\(a = 1, \ b = 10 \)
\(N = \frac{1}{4} \)
Conditional Example

P: $f(x)$ is a continuous function on $[a, b]$.

Q: N is a number strictly between $f(a)$ and $f(b)$.

R: There exists some number $c \in (a, b)$ such that $f(c) = N$.

Intermediate Value Theorem

$$ (P \land Q) \Rightarrow R $$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>$(P \land Q) \Rightarrow R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$f(x) = \frac{1}{x^2}$

\begin{align*}
a &= -10, \ b &= 1 \\
N &= 4
\end{align*}

\begin{align*}
(f(x) = \frac{1}{x^2}) \\
a &= -1, \ b &= 1 \\
N &= \frac{1}{4}
\end{align*}

\begin{align*}
\ f(x) = \frac{1}{x^2} \\
a &= 1, \ b &= 10 \\
N &= \frac{1}{4}
\end{align*}
Conditional Example

P: $f(x)$ is a continuous function on $[a, b]$.

Q: N is a number strictly between $f(a)$ and $f(b)$.

R: There exists some number $c \in (a, b)$ such that $f(c) = N$.

Intermediate Value Theorem

$(P \land Q) \Rightarrow R$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>$(P \land Q) \Rightarrow R$</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conditional Example

P: \(f(x) \) is a continuous function on \([a, b]\).

Q: \(N \) is a number strictly between \(f(a) \) and \(f(b) \).

R: There exists some number \(c \in (a, b) \) such that \(f(c) = N \).

Intermediate Value Theorem

\[(P \land Q) \implies R\]

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>((P \land Q) \implies R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

\[f(x) = \frac{1}{x^2}\]

\[a = -10, \ b = 1\]

\[N = 4\]

\[f(x) = \frac{1}{x^2}\]

\[a = -1, \ b = 1\]

\[N = \frac{1}{4}\]

\[f(x) = \frac{1}{x^2}\]

\[a = 1, \ b = 10\]

\[N = \frac{1}{4}\]
Conditional Example

\(P: f(x)\) is a continuous function on \([a, b]\).
\(Q: N\) is a number strictly between \(f(a)\) and \(f(b)\).
\(R: \) There exists some number \(c \in (a, b)\) such that \(f(c) = N\).

Intermediate Value Theorem

\[(P \land Q) \Rightarrow R\]

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>((P \land Q) \Rightarrow R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

\[f(x) = \frac{1}{x^2}\]
\(a = -10, \ b = 1\)
\(N = 4\)

\[f(x) = \frac{1}{x^2}\]
\(a = -1, \ b = 1\)
\(N = \frac{1}{4}\)

\[f(x) = \frac{1}{x^2}\]
\(a = 1, \ b = 10\)
\(N = \frac{1}{4}\)
Conditional Example

\[P: f(x) \text{ is a continuous function on } [a, b]. \]
\[Q: N \text{ is a number strictly between } f(a) \text{ and } f(b). \]
\[R: \text{There exists some number } c \in (a, b) \text{ such that } f(c) = N. \]

Intermediate Value Theorem

\((P \land Q) \Rightarrow R\)

\[
\begin{align*}
 f(x) &= \frac{1}{x^2} \\
 a &= -10, \ b = 1 \\
 N &= 4
\end{align*}
\]

\[
\begin{align*}
 f(x) &= \frac{1}{x^2} \\
 a &= -1, \ b = 1 \\
 N &= \frac{1}{4}
\end{align*}
\]

\[
\begin{align*}
 f(x) &= \frac{1}{x^2} \\
 a &= 1, \ b = 10 \\
 N &= \frac{1}{4}
\end{align*}
\]

\[
\begin{array}{|c|c|c|c|}
 \hline
 P & Q & R & (P \land Q) \Rightarrow R \\
 \hline
 F & F & T & T \\
 F & F & F & T \\
 T & & & \ \\
 \hline
\end{array}
\]
Conditional Example

\[P: f(x) \text{ is a continuous function on } [a, b]. \]
\[Q: N \text{ is a number strictly between } f(a) \text{ and } f(b). \]
\[R: \text{There exists some number } c \in (a, b) \text{ such that } f(c) = N. \]

Intermediate Value Theorem

\[(P \land Q) \Rightarrow R \]

\[
\begin{array}{c|c|c|c|c}
P & Q & R & (P \land Q) \Rightarrow R \\
\hline
F & F & T & T \\
F & F & F & T \\
T & T & & \\
\end{array}
\]

\[f(x) = \frac{1}{x^2} \]
\[a = -10, \ b = 1 \]
\[N = 4 \]

\[f(x) = \frac{1}{x^2} \]
\[a = -1, \ b = 1 \]
\[N = \frac{1}{4} \]

\[f(x) = \frac{1}{x^2} \]
\[a = 1, \ b = 10 \]
\[N = \frac{1}{4} \]
Conditional Example

\(P: f(x) \) is a continuous function on \([a, b]\).
\(Q: N \) is a number strictly between \(f(a) \) and \(f(b) \).
\(R: \) There exists some number \(c \in (a, b) \) such that \(f(c) = N \).

Intermediate Value Theorem

\[(P \land Q) \Rightarrow R\]

\[
f(x) = \frac{1}{x^2}
\]
\(a = -10, \ b = 1\)
\(N = 4\)

\[
f(x) = \frac{1}{x^2}
\]
\(a = -1, \ b = 1\)
\(N = \frac{1}{4}\)

\[
f(x) = \frac{1}{x^2}
\]
\(a = 1, \ b = 10\)
\(N = \frac{1}{4}\)
Conditional Example

\[P: \ f(x) \text{ is a continuous function on } [a, b]. \]
\[Q: \ N \text{ is a number strictly between } f(a) \text{ and } f(b). \]
\[R: \text{ There exists some number } c \in (a, b) \text{ such that } f(c) = N. \]

Intermediate Value Theorem

\[(P \land Q) \Rightarrow R \]

\[f(x) = \frac{1}{x^2} \]
\[a = -10, \ b = 1 \]
\[N = 4 \]

\[f(x) = \frac{1}{x^2} \]
\[a = -1, \ b = 1 \]
\[N = \frac{1}{4} \]

\[f(x) = \frac{1}{x^2} \]
\[a = 1, \ b = 10 \]
\[N = \frac{1}{4} \]
The statement

\[P \Rightarrow Q \]

is **true** whenever \(P \) is false.
The statement

\[P \Rightarrow Q \]

is **true** whenever \(P \) is false.

- A statement must be true or false, and not both.
Conditional Statements and Truth Tables

The statement

\[P \implies Q \]

is **true** whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming *nothing* is not false.)
Conditional Statements and Truth Tables

The statement

\[P \implies Q \]

is **true** whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming *nothing* is not false.)
- When mathematicians say a statement is a *theorem*, there should not be any instance in which that statement is false.
Conditional Statements and Truth Tables

The statement

\[P \Rightarrow Q \]

is **true** whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming *nothing* is not false.)
- When mathematicians say a statement is a *theorem*, there should not be any instance in which that statement is false.

Compare:

If \(n \) is divisible by 9, then \(n \) is divisible by 3.

If \(n \) is divisible by 3, then \(n \) is divisible by 9.
The statement

\[P \implies Q \]

is true whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming nothing is not false.)
- When mathematicians say a statement is a theorem, there should not be any instance in which that statement is false.

Compare:

If \(n \) is divisible by 9, then \(n \) is divisible by 3.

<table>
<thead>
<tr>
<th></th>
<th>(P)</th>
<th>(Q)</th>
<th>(P \implies Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

The example \(n = 6 \) shows that this statement is not a theorem, because it is not always true.
Conditional Statements and Truth Tables

The statement

\[P \implies Q \]

is true whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie. (So a statement claiming nothing is not false.)
- When mathematicians say a statement is a theorem, there should not be any instance in which that statement is false.

Compare:

If \(n \) is divisible by 9, then \(n \) is divisible by 3.

<table>
<thead>
<tr>
<th>(n = 6)</th>
<th>(P)</th>
<th>(Q)</th>
<th>(P \implies Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td></td>
</tr>
</tbody>
</table>

If \(n \) is divisible by 3, then \(n \) is divisible by 9.
The statement

\[P \Rightarrow Q \]

is true whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming *nothing* is not false.)
- When mathematicians say a statement is a *theorem*, there should not be any instance in which that statement is false.

Compare:

<table>
<thead>
<tr>
<th>(A)</th>
<th>(P)</th>
<th>(B)</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (n) is divisible by 9, then (n) is divisible by 3.</td>
<td>If (n) is divisible by 3, then (n) is divisible by 9.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n = 6)</td>
<td>(P)</td>
<td>(Q)</td>
<td>(P \Rightarrow Q)</td>
</tr>
<tr>
<td>(T)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conditional Statements and Truth Tables

The statement

\[P \implies Q \]

is **true** whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie. (So a statement claiming *nothing* is not false.)
- When mathematicians say a statement is a *theorem*, there should not be any instance in which that statement is false.

Compare:

If \(n \) is divisible by 9, then \(n \) is divisible by 3.

<table>
<thead>
<tr>
<th>(n = 6)</th>
<th>(P)</th>
<th>(Q)</th>
<th>(P \implies Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
The statement

\[P \Rightarrow Q \]

is **true** whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming *nothing* is not false.)
- When mathematicians say a statement is a *theorem*, there should not be any instance in which that statement is false.

Compare:

\[A \]
If \(n \) is divisible by 9, then \(n \) is divisible by 3.

\[B \]

\[P \]
If \(n \) is divisible by 3, then \(n \) is divisible by 9.

\[Q \]

\[
\begin{array}{|c|c|c|}
\hline
n = 6 & P & Q & P \Rightarrow Q \\
\hline
T & F & F & F \\
\hline
\end{array}
\]

The example \(n = 6 \) shows that this statement is not a theorem, because it is not always true.
The statement

\[P \Rightarrow Q \]

is **true** whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming *nothing* is not false.)
- When mathematicians say a statement is a *theorem*, there should not be any instance in which that statement is false.

Compare:

<table>
<thead>
<tr>
<th>(n) = 6</th>
<th>(P)</th>
<th>(Q)</th>
<th>(P \Rightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

The example \(n = 6 \) shows that this statement is not a theorem, because it is not always true.
The statement \[P \Rightarrow Q \]
is true whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming \textit{nothing} is not false.)
- When mathematicians say a statement is a \textit{theorem}, there should not be any instance in which that statement is false.

Compare:

\[P \Rightarrow Q \]

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \Rightarrow B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If \(n \) is divisible by 9, then \(n \) is divisible by 3.

\[n = 6 \]

\begin{array}{|c|c|c|}
\hline
P & Q & P \Rightarrow Q \\
\hline
T & F & F \\
\hline
\end{array}

The example \(n = 6 \) shows that this statement is not a theorem, because it is not always true.
The statement

\[P \Rightarrow Q \]

is true whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie. (So a statement claiming nothing is not false.)
- When mathematicians say a statement is a theorem, there should not be any instance in which that statement is false.

Compare:

If \(n \) is divisible by 9, then \(n \) is divisible by 3.

\[
\begin{array}{ccc}
A & B & A \Rightarrow B \\
\hline
n = 6 & F & \\
\end{array}
\]

If \(n \) is divisible by 3, then \(n \) is divisible by 9.

\[
\begin{array}{ccc}
P & Q & P \Rightarrow Q \\
\hline
n = 6 & T & F & F \\
\end{array}
\]

The example \(n = 6 \) shows that this statement is not a theorem, because it is not always true.
The statement

\[P \Rightarrow Q \]

is **true** whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie. (So a statement claiming *nothing* is not false.)
- When mathematicians say a statement is a *theorem*, there should not be any instance in which that statement is false.

Compare:

\[P \Rightarrow Q \]

<table>
<thead>
<tr>
<th>(n = 6)</th>
<th>(F)</th>
<th>(T)</th>
<th>(A \Rightarrow B)</th>
</tr>
</thead>
</table>

If \(n \) is divisible by 9, then \(n \) is divisible by 3.

\[A \]

If \(n \) is divisible by 3, then \(n \) is divisible by 9.

\[B \]

\[\begin{array}{ccc|c}
 n & P & Q & P \Rightarrow Q \\
 \hline
 n = 6 & T & F & F \\
\end{array} \]

The example \(n = 6 \) shows that this statement is not a theorem, because it is not always true.
The statement

\[P \implies Q \]

is **true** whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie. (So a statement claiming *nothing* is not false.)
- When mathematicians say a statement is a *theorem*, there should not be any instance in which that statement is false.

Compare:

If \(n \) is divisible by 9, then \(n \) is divisible by 3.

\[A \]

If \(n \) is divisible by 3, then \(n \) is divisible by 9.

\[B \]

<table>
<thead>
<tr>
<th>(n = 6)</th>
<th>(P)</th>
<th>(Q)</th>
<th>(P \implies Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(T)</td>
<td></td>
<td>(F)?</td>
</tr>
</tbody>
</table>

The example \(n = 6 \) shows that this statement is not a theorem, because it is not always true.
The statement

\[P \implies Q \]

is true whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming nothing is not false.)
- When mathematicians say a statement is a theorem, there should not be any instance in which that statement is false.

Compare:

If \(n \) is divisible by 9, then \(n \) is divisible by 3.

\[
\begin{array}{ccc}
A & B & A \implies B \\
\hline
n = 6 & F & T \\
\end{array}
\]

If \(n \) is divisible by 3, then \(n \) is divisible by 9.

\[
\begin{array}{ccc}
P & Q & P \implies Q \\
\hline
n = 6 & T & F \\
\end{array}
\]

The example \(n = 6 \) shows that this statement is not a theorem, because it is not always true.
The statement

\[P \Rightarrow Q \]

is true whenever \(P \) is false.

- A statement must be true or false, and not both.
- If you don’t claim anything, then you didn’t lie.
 (So a statement claiming *nothing* is not false.)
- When mathematicians say a statement is a *theorem*, there should not be any instance in which that statement is false.

Compare:

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(A \Rightarrow B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 6)</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

If \(A \Rightarrow B \) were false for some values of \(n \), then it would not be a theorem.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \Rightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 6)</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

The example \(n = 6 \) shows that this statement is not a theorem, because it is not always true.
Further Examples with Conditional Statements

(the TV is made entirely of cheese) \[\implies \] (the TV does not turn on)
(you are in Canada) \[\iff \] (you are in Vancouver, BC)
\[(x > 3) \implies (x \geq 3)\]
\[(x^2 > 9) \implies (|x| \geq 3)\]
Further Examples with Conditional Statements

- (the TV is made entirely of cheese) ⇒ (the TV does not turn on)
- (you are in Canada) ⇒ (you are in Vancouver, BC)
- \((x > 3)\) ⇒ \((x \geq 3)\)
- \((x^2 > 9)\) ⇒ \(|x| \geq 3\)
Further Examples with Conditional Statements

\[(\text{the TV is made entirely of cheese}) \Rightarrow (\text{the TV does not turn on})\]
\[(\text{you are in Canada}) \iff (\text{you are in Vancouver, BC})\]
\[(x > 3) \iff (x \geq 3)\]
\[(x^2 > 9) \iff (|x| \geq 3)\]
Further Examples with Conditional Statements

(the TV is made entirely of cheese) \Rightarrow (the TV does not turn on)
(you are in Canada) \Leftarrow (you are in Vancouver, BC)

$(x > 3) \Rightarrow (x \geq 3)$

$(x^2 > 9)$ \Rightarrow $(|x| \geq 3)$
Further Examples with Conditional Statements

(the TV is made entirely of cheese) \implies (the TV does not turn on)

(you are in Canada) \iff (you are in Vancouver, BC)

(x > 3) \implies (x \geq 3)

(x^2 > 9) \implies (|x| \geq 3)
Converse Statements

Careful!

\[P \Rightarrow Q \] does not mean that \[Q \Rightarrow P. \]
\[Q \Rightarrow P \] is called the **converse** of \[P \Rightarrow Q. \]
Converse Statements

Careful!

\[P \Rightarrow Q \] does not mean that \[Q \Rightarrow P. \]
\[Q \Rightarrow P \] is called the converse of \[P \Rightarrow Q. \]

If you are the prime minister, then you are a human.
Converse Statements

Careful!

\[P \Rightarrow Q \text{ does not mean that } Q \Rightarrow P. \]
\[Q \Rightarrow P \text{ is called the converse of } P \Rightarrow Q. \]

If you are the prime minister, then you are a human. True.
Converse Statements

Careful!

\[P \implies Q \text{ does not mean that } Q \implies P. \]

\[Q \implies P \text{ is called the } \textbf{converse} \text{ of } P \implies Q. \]

If you are the prime minister, then you are a human. \hspace{1cm} \text{True.}

If you are a human, then you are the prime minister.

If you are the murderer, then you were driving a blue van.

Daniel was driving a blue van.

Is Daniel the murderer?

Maybe, maybe not.
Converse Statements

Careful!

$P \Rightarrow Q$ does not mean that $Q \Rightarrow P$.
$Q \Rightarrow P$ is called the **converse** of $P \Rightarrow Q$.

If you are the prime minister, then you are a human. True.
If you are a human, then you are the prime minister. False.
Converse Statements

Careful!

\[P \Rightarrow Q \] does not mean that \[Q \Rightarrow P \].
\[Q \Rightarrow P \] is called the **converse** of \[P \Rightarrow Q \].

If you are the prime minister, then you are a human. True.
If you are a human, then you are the prime minister. False.

If you are the murderer, then you were driving a blue van.
Converse Statements

Careful!

\[P \Rightarrow Q \text{ does not mean that } Q \Rightarrow P. \]

\[Q \Rightarrow P \text{ is called the } \textbf{converse} \text{ of } P \Rightarrow Q. \]

If you are the prime minister, then you are a human.
True.

If you are a human, then you are the prime minister.
False.

If you are the murderer, then you were driving a blue van.
Daniel was driving a blue van.
Converse Statements

Careful!

<table>
<thead>
<tr>
<th>$P \implies Q$ does not mean that $Q \implies P$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q \implies P$ is called the converse of $P \implies Q$.</td>
</tr>
</tbody>
</table>

If you are the prime minister, then you are a human.
If you are a human, then you are the prime minister.

If you are the murderer, then you were driving a blue van.
Daniel was driving a blue van. Is Daniel the murderer?
Converse Statements

Careful!

\[P \Rightarrow Q \] does not mean that \[Q \Rightarrow P. \]
\[Q \Rightarrow P \] is called the **converse** of \[P \Rightarrow Q. \]

If you are the prime minister, then you are a human. \hspace{1cm} True.
If you are a human, then you are the prime minister. \hspace{1cm} False.

If you are the murderer, then you were driving a blue van.
Daniel was driving a blue van. Is Daniel the murderer?
Maybe, maybe not.
Converse Statements

Careful!

$P \Rightarrow Q$ does not mean that $Q \Rightarrow P$.
$Q \Rightarrow P$ is called the converse of $P \Rightarrow Q$.

If you are the prime minister, then you are a human. True.
If you are a human, then you are the prime minister. False.

If you are the murderer, then you were driving a blue van.
Daniel was driving a blue van. Is Daniel the murderer?
Maybe, maybe not.

In every day life, we use “if/then” statements imprecisely.
If you are registered for this course, then you will turn in homework on Friday.
Converse Statements

Careful!

\[P \implies Q \] does not mean that \[Q \implies P \].

\[Q \implies P \] is called the **converse** of \[P \implies Q \].

If you are the prime minister, then you are a human. \hspace{2cm} \text{True.}

If you are a human, then you are the prime minister. \hspace{2cm} \text{False.}

If you are the murderer, then you were driving a blue van.

Daniel was driving a blue van. Is Daniel the murderer?

Maybe, maybe not.

In every day life, we use “if/then” statements imprecisely.

If you are registered for this course, then you will turn in homework on Friday.

Not necessarily true.
Converse Statements

Careful!

\[P \implies Q \] does not mean that \(Q \implies P \).
\(Q \implies P \) is called the **converse** of \(P \implies Q \).

If you are the prime minister, then you are a human. True.
If you are a human, then you are the prime minister. False.

If you are the murderer, then you were driving a blue van.
Daniel was driving a blue van. Is Daniel the murderer?
Maybe, maybe not.

In every day life, we use “if/then” statements imprecisely.
If you are registered for this course, then you will turn in homework on Friday. Not necessarily true.
If you turn in homework on Friday, then you are registered for this course.
Converse Statements

Careful!

\[P \implies Q \] does not mean that \[Q \implies P \].
\[Q \implies P \] is called the **converse** of \(P \implies Q \).

If you are the prime minister, then you are a human. True.
If you are a human, then you are the prime minister. False.

If you are the murderer, then you were driving a blue van.
Daniel was driving a blue van. Is Daniel the murderer?
Maybe, maybe not.

In every day life, we use “if/then” statements imprecisely.
If you are registered for this course, then you will turn in homework on Friday. Not necessarily true.
If you turn in homework on Friday, then you are registered for this course. Not necessarily true.
Biconditional Statements (if and only if)

Definition

A statement of the form $P \iff Q$ (meaning $P \Rightarrow Q$ AND $Q \Rightarrow P$) is **biconditional**. It means that P is true if and only if Q is true. In this case, we think of P and Q as being equivalent.
Biconditional Statements (if and only if)

Definition

A statement of the form \(P \iff Q \) (meaning \(P \Rightarrow Q \) AND \(Q \Rightarrow P \)) is **biconditional**. It means that \(P \) is true if and only if \(Q \) is true. In this case, we think of \(P \) and \(Q \) as being equivalent.

A matrix \(A \) is invertible if and only if it has nonzero determinant.
Definition

A statement of the form $P \Leftrightarrow Q$ (meaning $P \Rightarrow Q$ AND $Q \Rightarrow P$) is **biconditional**. It means that P is true if and only if Q is true. In this case, we think of P and Q as being equivalent.

A matrix A is invertible if and only if it has nonzero determinant.
(A is an invertible matrix) \Leftrightarrow (A is a matrix with nonzero determinant)
Biconditional Statements (if and only if)

Definition

A statement of the form $P \iff Q$ (meaning $P \Rightarrow Q$ AND $Q \Rightarrow P$) is **biconditional**. It means that P is true if and only if Q is true. In this case, we think of P and Q as being equivalent.

A matrix A is invertible if and only if it has nonzero determinant.

$(A$ is an invertible matrix) \iff $(A$ is a matrix with nonzero determinant)$

Conditional or Biconditional?

$(n$ is an even integer), $\quad (n$ is an integer divisible by 2)$

$(T$ is teaching our class right now), $\quad (T$ is named Elyse)$

If x is any real number,$

$(\sqrt{x^2} = x), \quad (x \geq 10)$
Biconditional Statements (if and only if)

Definition
A statement of the form \(P \iff Q \) (meaning \(P \implies Q \) AND \(Q \implies P \)) is biconditional. It means that \(P \) is true if and only if \(Q \) is true. In this case, we think of \(P \) and \(Q \) as being equivalent.

A matrix \(A \) is invertible if and only if it has nonzero determinant.
\((A \text{ is an invertible matrix}) \iff (A \text{ is a matrix with nonzero determinant})\)

Conditional or Biconditional?
\((n \text{ is an even integer}) \iff (n \text{ is an integer divisible by } 2)\)

\((T \text{ is teaching our class right now}), \ (T \text{ is named Elyse})\)

If \(x \) is any real number,
\((\sqrt{x^2} = x), \ (x \geq 10)\)
Biconditional Statements (if and only if)

Definition
A statement of the form $P \iff Q$ (meaning $P \implies Q$ AND $Q \implies P$) is **biconditional**. It means that P is true if and only if Q is true. In this case, we think of P and Q as being equivalent.

A matrix A is invertible if and only if it has nonzero determinant.
(A is an invertible matrix) \iff (A is a matrix with nonzero determinant)

Conditional or Biconditional?

(n is an even integer) \iff (n is an integer divisible by 2)

(T is teaching our class right now) \Rightarrow (T is named Elyse)

If x is any real number,
($\sqrt{x^2} = x$), ($x \geq 10$)
Biconditional Statements (if and only if)

Definition

A statement of the form \(P \iff Q \) (meaning \(P \Rightarrow Q \) AND \(Q \Rightarrow P \)) is **biconditional**. It means that \(P \) is true if and only if \(Q \) is true. In this case, we think of \(P \) and \(Q \) as being equivalent.

A matrix \(A \) is invertible if and only if it has nonzero determinant.

\[(A \text{ is an invertible matrix}) \iff (A \text{ is a matrix with nonzero determinant})\]

Conditional or Biconditional?

\[(n \text{ is an even integer}) \iff (n \text{ is an integer divisible by 2})\]

\[(T \text{ is teaching our class right now}) \Rightarrow (T \text{ is named Elyse})\]

If \(x \) is any real number,

\[(\sqrt{x^2} = x) \iff (x \geq 10)\]
Further Examples with (Bi-)Conditional Statements

\[
\begin{align*}
& (x = 0) & & (4x = 0) \\
& (x^2 - 4 = 0) & & (x = 2) \\
& \text{\(x\) is an integer} & & \text{\(x - 17\) is an integer} \\
& \text{\(x\) is odd} & & \text{\(1 + x\) is even} \\
& \text{\(x\) is a real number} & & \text{\(x^2\) is a real number} \\
& (x^2 \geq 9) & & (|x| \geq 3)
\end{align*}
\]
Further Examples with (Bi-)Conditional Statements

\[(x = 0) \iff (4x = 0)\]

\[(x^2 - 4 = 0) \iff (x = 2)\]

\[(x \text{ is an integer}) \iff (x - 17 \text{ is an integer})\]

\[(x \text{ is odd}) \iff (1 + x \text{ is even})\]

\[(x \text{ is a real number}) \iff (x^2 \text{ is a real number})\]

\[|x| \geq 3\]
Further Examples with (Bi-)Conditional Statements

\[(x = 0) \iff (4x = 0)\]
\[(x^2 - 4 = 0) \iff (x = 2)\]
\[(x \text{ is an integer}) \iff (x - 17 \text{ is an integer})\]
\[(x \text{ is odd}) \iff (1 + x \text{ is even})\]
\[(x \text{ is a real number}) \iff (x^2 \text{ is a real number})\]
\[(x^2 \geq 9) \iff (|x| \geq 3)\]
Further Examples with (Bi-)Conditional Statements

\[(x = 0) \leftrightarrow (4x = 0) \]
\[(x^2 - 4 = 0) \leftrightarrow (x = 2) \]
\[(x \text{ is an integer}) \leftrightarrow (x - 17 \text{ is an integer}) \]
\[(x \text{ is odd}) \leftrightarrow (1 + x \text{ is even}) \]
\[(x \text{ is a real number}) \leftrightarrow (x^2 \text{ is a real number}) \]
\[(x^2 \geq 9) \leftrightarrow (|x| \geq 3) \]
Further Examples with (Bi-)Conditional Statements

\[(x = 0) \iff (4x = 0)\]
\[(x^2 - 4 = 0) \iff (x = 2)\]
\[(x \text{ is an integer}) \iff (x - 17 \text{ is an integer})\]
\[(x \text{ is odd}) \iff (1 + x \text{ is even})\]
\[(x \text{ is a real number}) \iff (x^2 \text{ is a real number})\]
\[(x^2 \geq 9) \iff (|x| \geq 3)\]
Further Examples with (Bi-)Conditional Statements

\[
\begin{align*}
(x = 0) & \iff (4x = 0) \\
(x^2 - 4 = 0) & \iff (x = 2) \\
(x \text{ is an integer}) & \iff (x - 17 \text{ is an integer}) \\
(x \text{ is odd}) & \iff (1 + x \text{ is even}) \\
(x \text{ is a real number}) & \implies (x^2 \text{ is a real number}) \\
(x^2 \geq 9) & \iff (|x| \geq 3)
\end{align*}
\]
Further Examples with (Bi-)Conditional Statements

\[(x = 0) \iff (4x = 0)\]
\[(x^2 - 4 = 0) \iff (x = 2)\]
\[(x \text{ is an integer}) \iff (x - 17 \text{ is an integer})\]
\[(x \text{ is odd}) \iff (1 + x \text{ is even})\]
\[(x \text{ is a real number}) \implies (x^2 \text{ is a real number})\]
\[(x^2 \geq 9) \iff (|x| \geq 3)\]
Suppose you have a statement that involves 5 separate statements, for example:

\[(A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E)\]
Suppose you have a statement that involves 5 separate statements, for example:

\[(A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E)\]

How many rows will be in the truth table?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>((A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suppose you have a statement that involves 5 separate statements, for example:

\[(A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E)\]

How many rows will be in the truth table?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>((A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Suppose you have a statement that involves 5 separate statements, for example:

\[(A \land B \land C) \lor (\neg A \land D) \lor (\neg B \land E)\]

How many rows will be in the truth table?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>((A \land B \land C) \lor (\neg A \land D) \lor (\neg B \land E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Suppose you have a statement that involves 5 separate statements, for example:

\[(A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E)\]

How many rows will be in the truth table?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>((A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Tables

Suppose you have a statement that involves 5 separate statements, for example:

$$(A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E)$$

How many rows will be in the truth table?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>$(A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suppose you have a statement that involves 5 separate statements, for example:

\[(A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E)\]

How many rows will be in the truth table?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>((A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Consider the following model: you choose which statements are true, and the rest are false.
Truth Tables

Suppose you have a statement that involves 5 separate statements, for example:

\[(A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E)\]

How many rows will be in the truth table?

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>((A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

Consider the following model: you choose which statements are true, and the rest are false.
Suppose you have a statement that involves 5 separate statements, for example:

\[(A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E)\]

How many rows will be in the truth table?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>((A \land B \land C) \lor (\sim A \land D) \lor (\sim B \land E))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Consider the following model: you choose which statements are true, and the rest are false.
Two statements are logically equivalent if (and only if) they have exactly the same values in a truth table.
Logical Equivalence and Truth Tables

Definition

Two statements are logically equivalent if (and only if) they have exactly the same values in a truth table.

\((P \text{ and } Q \text{ are logically equivalent}) \iff (P \iff Q)\)
Definition

Two statements are logically equivalent if (and only if) they have exactly the same values in a truth table.

\[(P \text{ and } Q \text{ are logically equivalent}) \iff (P \iff Q)\]

Example: \((\sim P \lor \sim Q)\) is equivalent to \(\sim (P \land Q)\)
Definition

Two statements are logically equivalent if (and only if) they have exactly the same values in a truth table.

\((P \text{ and } Q \text{ are logically equivalent}) \iff (P \iff Q)\)

Example: \((\sim P \lor \sim Q)\) is equivalent to \(\sim (P \land Q)\)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>\sim P</th>
<th>\sim Q</th>
<th>P \land Q</th>
<th>(\sim P \lor \sim Q)</th>
<th>\sim (P \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Logical Equivalence and Truth Tables

Definition

Two statements are logically equivalent if (and only if) they have exactly the same values in a truth table.

\((P \text{ and } Q \text{ are logically equivalent}) \iff (P \iff Q)\)

Example: \((\sim P \lor \sim Q)\) is equivalent to \(\sim (P \land Q)\)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>\sim P</th>
<th>\sim Q</th>
<th>P \land Q</th>
<th>(\sim P \lor \sim Q)</th>
<th>\sim (P \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition

Two statements are logically equivalent if (and only if) they have exactly the same values in a truth table.

\[(P \text{ and } Q \text{ are logically equivalent}) \iff (P \iff Q)\]

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>\sim P</th>
<th>\sim Q</th>
<th>P \land Q</th>
<th>(\sim P \lor \sim Q)</th>
<th>\sim (P \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Definition

Two statements are logically equivalent if (and only if) they have exactly the same values in a truth table.

\((P \text{ and } Q \text{ are logically equivalent}) \iff (P \iff Q)\)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(\sim P)</th>
<th>(\sim Q)</th>
<th>(P \land Q)</th>
<th>(\sim (P \lor \sim Q))</th>
<th>(\sim (P \land Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Logical Equivalence and Truth Tables

Definition

Two statements are logically equivalent if (and only if) they have exactly the same values in a truth table.

\((P \text{ and } Q \text{ are logically equivalent}) \Leftrightarrow (P \Leftrightarrow Q)\)

Example: \((\sim P \lor \sim Q)\) is equivalent to \(\sim (P \land Q)\)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(\sim P)</th>
<th>(\sim Q)</th>
<th>(P \land Q)</th>
<th>(\sim (P \lor \sim Q))</th>
<th>(\sim (P \land Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>
Logical Equivalence and Truth Tables

Definition

Two statements are logically equivalent if (and only if) they have exactly the same values in a truth table.

\((P \text{ and } Q \text{ are logically equivalent}) \iff (P \iff Q)\)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>~ P</th>
<th>~ Q</th>
<th>(P \land Q)</th>
<th>(\sim (P \lor \sim Q))</th>
<th>(\sim (P \land Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Logical Equivalence

Which of the following are logically equivalent statements?

- $P \Rightarrow Q$
- $\sim P \land \sim Q$
- $\sim P \lor Q$
- $\sim (P \lor Q)$
Which of the following are logically equivalent statements?

- $P \Rightarrow Q$
- $\sim P \wedge \sim Q$
- $\sim P \lor Q$
- $\sim (P \lor Q)$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$P \Rightarrow Q$</th>
<th>$\sim P \wedge \sim Q$</th>
<th>$\sim P \lor Q$</th>
<th>$\sim (P \lor Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Which of the following are logically equivalent statements?

- \(P \implies Q \)
- \(\neg P \land \neg Q \)
- \(\neg P \lor Q \)
- \(\neg (P \lor Q) \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(P \implies Q)</th>
<th>(\neg P \land \neg Q)</th>
<th>(\neg P \lor Q)</th>
<th>(\neg (P \lor Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
De Morgan’s Laws:

- \(\sim (P \land Q) \iff (\sim P \lor \sim Q) \)
- \(\sim (P \lor Q) \iff (\sim P \land \sim Q) \)
Common Equivalences

De Morgan’s Laws:
- \(\sim (P \land Q) \iff (\sim P \lor \sim Q) \)
- \(\sim (P \lor Q) \iff (\sim P \land \sim Q) \)

Associative Laws:
- \((P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R)\)
- \((P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R)\)
De Morgan’s Laws:

- $\sim (P \land Q) \iff (\sim P \lor \sim Q)$
- $\sim (P \lor Q) \iff (\sim P \land \sim Q)$

Associative Laws:

- $(P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R)$
- $(P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R)$

Contrapositive:

- $(P \implies Q) \iff ((\sim Q) \implies (\sim P))$
Common Equivalences

De Morgan’s Laws:

- \(\sim (P \land Q) \iff (\sim P \lor \sim Q) \)
- \(\sim (P \lor Q) \iff (\sim P \land \sim Q) \)

Associative Laws:

- \((P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R)\)
- \((P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R)\)

Contrapositive:

- \((P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))\)
Common Equivalences

De Morgan's Laws:
- \(\sim (P \land Q) \iff (\sim P \lor \sim Q) \)
- \(\sim (P \lor Q) \iff (\sim P \land \sim Q) \)

Associative Laws:
- \((P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R)\)
- \((P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R)\)

Contrapositive:
- \((P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))\)
Common Equivalences

De Morgan’s Laws:
- \(\sim (P \land Q) \Leftrightarrow (\sim P \lor \sim Q) \)
- \(\sim (P \lor Q) \Leftrightarrow (\sim P \land \sim Q) \)

Associative Laws:
- \((P \land Q) \land R \Leftrightarrow P \land (Q \land R) \Leftrightarrow (P \land Q \land R) \)
- \((P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R) \Leftrightarrow (P \lor Q \lor R) \)

Contrapositive:
- \((P \Rightarrow Q) \Leftrightarrow ((\sim Q) \Rightarrow (\sim P)) \)
Common Equivalences

De Morgan’s Laws:

- \(\sim (P \land Q) \iff (\sim P \lor \sim Q) \)
- \(\sim (P \lor Q) \iff (\sim P \land \sim Q) \)

Associative Laws:

- \((P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R) \)
- \((P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R) \)

Contrapositive:

- \((P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P)) \)
Common Equivalences

De Morgan’s Laws:
- $\sim (P \land Q) \iff (\sim P \lor \sim Q)$
- $\sim (P \lor Q) \iff (\sim P \land \sim Q)$

Associative Laws:
- $(P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R)$
- $(P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R)$

Contrapositive:
- $(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))$

\[
\begin{array}{c|c|c}
P & P \text{ true} & P \text{ false} \\
\hline
Q \text{ is true} & \text{maybe Q true} & \text{maybe Q false} \\
\hline
\sim Q \Rightarrow \sim P
\end{array}
\]
Common Equivalences

De Morgan’s Laws:
- \(\sim (P \land Q) \iff (\sim P \lor \sim Q) \)
- \(\sim (P \lor Q) \iff (\sim P \land \sim Q) \)

Associative Laws:
- \((P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R) \)
- \((P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R) \)

Contrapositive:
- \((P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P)) \)

\[\sim Q \]

\[\sim Q \Rightarrow \sim P \]
Common Equivalences

De Morgan’s Laws:
- $\sim (P \land Q) \iff (\sim P \lor \sim Q)$
- $\sim (P \lor Q) \iff (\sim P \land \sim Q)$

Associative Laws:
- $(P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R)$
- $(P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R)$

Contraposition:
- $(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))$
Common Equivalences

De Morgan’s Laws:
- \(\sim (P \land Q) \Leftrightarrow (\sim P \lor \sim Q) \)
- \(\sim (P \lor Q) \Leftrightarrow (\sim P \land \sim Q) \)

Associative Laws:
- \((P \land Q) \land R \Leftrightarrow P \land (Q \land R) \Leftrightarrow (P \land Q \land R) \)
- \((P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R) \Leftrightarrow (P \lor Q \lor R) \)

Contrapositive:
- \((P \Rightarrow Q) \Leftrightarrow ((\sim Q) \Rightarrow (\sim P)) \)
Common Equivalences

De Morgan’s Laws:
- $\sim (P \land Q) \iff (\sim P \lor \sim Q)$
- $\sim (P \lor Q) \iff (\sim P \land \sim Q)$

Associative Laws:
- $(P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R)$
- $(P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R)$

Contrapositive:
- $(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))$
Common Equivalences

De Morgan’s Laws:
- $\sim (P \land Q) \iff (\sim P \lor \sim Q)$
- $\sim (P \lor Q) \iff (\sim P \land \sim Q)$

Associative Laws:
- $(P \land Q) \land R \iff P \land (Q \land R) \iff (P \land Q \land R)$
- $(P \lor Q) \lor R \iff P \lor (Q \lor R) \iff (P \lor Q \lor R)$

Contrapositive:
- $(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))$
Implication (Conditional Statements) and the Contrapositive

\[(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))\]

Let the Venn diagram below represent two sets: the set of all instances in which statement \(P \) is true, and the set of all instances in which \(Q \) is true. If \(P \Rightarrow Q \), label \(P \) and \(Q \) below.
Implication (Conditional Statements) and the Contrapositive

\[(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))\]

Let the Venn diagram below represent two sets: the set of all instances in which statement \(P\) is true, and the set of all instances in which \(Q\) is true. If \(P \Rightarrow Q\), label \(P\) and \(Q\) below.
Common Equivalences

Contrapositive:

- \((P \Rightarrow Q) \Leftrightarrow ((\sim Q) \Rightarrow (\sim P))\)
Common Equivalences

Contrapositive:

- \((P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))\)

If you are prime minister, then you are a human.
Common Equivalences

Contrapositive:

- \((P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))\)

If you are prime minister, then you are a human.
If you are not a human, then you are not prime minister.
Common Equivalences

Contrapositive:

\[(P \Rightarrow Q) \Leftrightarrow (\sim Q \Rightarrow \sim P) \]

If you are prime minister, then you are a human.
If you are not a human, then you are not prime minister.

If you are the murderer, then you drove a blue van yesterday.
Common Equivalences

Contrapositive:

\[(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))\]

If you are prime minister, then you are a human.
If you are not a human, then you are not prime minister.

If you are the murderer, then you drove a blue van yesterday.
Jin did not drive a blue van yesterday.
Common Equivalences

Contrapositive:

\[(P \Rightarrow Q) \Leftrightarrow ((\sim Q) \Rightarrow (\sim P)) \]

If you are prime minister, then you are a human.
If you are not a human, then you are not prime minister.

If you are the murderer, then you drove a blue van yesterday.
Jin did not drive a blue van yesterday. Can Jin be the murderer?
Common Equivalences

Contrapositive:

\[(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))\]

If you are prime minister, then you are a human.
If you are not a human, then you are not prime minister.

If you are the murderer, then you drove a blue van yesterday.
Jin did not drive a blue van yesterday. Can Jin be the murderer? Logically, Jin is definitely not the murderer.
Common Equivalences

Contrapositive:

\[(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P)) \]

If you are prime minister, then you are a human.
If you are not a human, then you are not prime minister.

If you are the murderer, then you drove a blue van yesterday.
Jin did not drive a blue van yesterday. Can Jin be the murderer?
Logically, Jin is definitely not the murderer.

Let \(f(x) \) be a differentiable function. If \(f(x) \) has at least two roots, then \(f'(x) = 0 \) somewhere. (Rolle’s Theorem)
Contrapositive:

- \((P \Rightarrow Q) \Leftrightarrow ((\sim Q) \Rightarrow (\sim P))\)

If you are prime minister, then you are a human.
If you are not a human, then you are not prime minister.

If you are the murderer, then you drove a blue van yesterday.
Jin did not drive a blue van yesterday. Can Jin be the murderer?
Logically, Jin is definitely not the murderer.

Let \(f(x)\) be a differentiable function. If \(f(x)\) has at least two roots, then \(f'(x) = 0\) somewhere. (Rolle’s Theorem)
Let \(f(x)\) be a differentiable function. If \(f'(x)\) is never zero, then \(f(x)\) has at most one root.
Contrapositive:

\[(P \Rightarrow Q) \iff ((\sim Q) \Rightarrow (\sim P))\]

If you are prime minister, then you are a human.
If you are not a human, then you are not prime minister.

If you are the murderer, then you drove a blue van yesterday.
Jin did not drive a blue van yesterday. Can Jin be the murderer?
Logically, Jin is definitely not the murderer.

Let \(f(x) \) be a differentiable function. If \(f(x) \) has at least two roots, then \(f'(x) = 0 \) somewhere. (Rolle’s Theorem)

Let \(f(x) \) be a differentiable function. If \(f'(x) \) is never zero, then \(f(x) \) has at most one root.
Example: \(f(x) = e^x + x - 1 \)
A Statement is Logically Equivalent to its Contrapositive

For each statement below, choose the statement that is logically equivalent.

\[P \Rightarrow Q \]

(a) \(Q \Rightarrow P \)
(b) \(\sim P \Rightarrow \sim Q \)
(c) \(\sim Q \Rightarrow \sim P \)
A Statement is Logically Equivalent to its Contrapositive

For each statement below, choose the statement that is logically equivalent.

\[P \Rightarrow Q \]

(a) \(Q \Rightarrow P \)
(b) \(\sim P \Rightarrow \sim Q \)
(c) \(\sim Q \Rightarrow \sim P \)
A Statement is Logically Equivalent to its Contrapositive

For each statement below, choose the statement that is logically equivalent.

\[P \Rightarrow Q \]

(a) \(Q \Rightarrow P \)
(b) \(\sim P \Rightarrow \sim Q \)
(c) \(\sim Q \Rightarrow \sim P \)

If it is a square, then it is a rectangle.

(a) If it is a rectangle, then it is a square.
(b) If is it not a square, then it is not a rectangle.
(c) If it is not a rectangle, then it is not a square.
(d) It is a square if and only if it is a rectangle.
(e) It is a square if and only if it is a square.
For each statement below, choose the statement that is logically equivalent.

\[P \implies Q \]

(a) \(Q \implies P \)
(b) \(\sim P \implies \sim Q \)
(c) \(\sim Q \implies \sim P \)

If it is a square, then it is a rectangle.

(a) If it is a rectangle, then it is a square.
(b) If it is not a square, then it is not a rectangle.
(c) **If it is not a rectangle, then it is not a square.**
(d) It is a square if and only if it is a rectangle.
(e) It is a square if and only if it is a square.
A Statement is Logically Equivalent to its Contrapositive

For each statement below, choose the statement that is logically equivalent.

\[P \implies Q \]

(a) \(Q \implies P \)
(b) \(\sim P \implies \sim Q \)
(c) \(\sim Q \implies \sim P \)

If it is a square, then it is a rectangle.

(a) If it is a rectangle, then it is a square.
(b) If is it not a square, then it is not a rectangle.
(c) \textit{If it is not a rectangle, then it is not a square.}
(d) It is a square if and only if it is a rectangle.
(e) It is a square if and only if it is a square.

If you cook, then you clean.

(a) If you do not cook, then you do not clean.
(b) If you do not clean, then you do not cook.
(c) You cook if and only if you clean.
(d) If you do not clean, you cooked.
A Statement is Logically Equivalent to its Contrapositive

For each statement below, choose the statement that is logically equivalent.

\[P \Rightarrow Q \]

(a) \(Q \Rightarrow P \)
(b) \(\sim P \Rightarrow \sim Q \)
(c) \(\sim Q \Rightarrow \sim P \)

If it is a square, then it is a rectangle.

(a) If it is a rectangle, then it is a square.
(b) If it is not a square, then it is not a rectangle.
(c) **If it is not a rectangle, then it is not a square.**
(d) It is a square if and only if it is a rectangle.
(e) It is a square if and only if it is a square.

If you cook, then you clean.

(a) If you do not cook, then you do not clean.
(b) **If you do not clean, then you do not cook.**
(c) You cook if and only if you clean.
(d) If you do not clean, you cooked.
A Statement is Logically Equivalent to its Contrapositive

For each statement below, choose the statement that is logically equivalent.

If the year is 1999, then we are partying.

(a) If we are not partying, then the year is not 1999.
(b) If the year is not 1999, then we are not partying.
(c) We are partying if and only if the year is 1999.

If you aren’t part of the solution, you’re part of the problem.

(a) If you are a part of the problem, then you are not a part of the solution.
(b) You are a part of the solution if and only if you are not a part of the problem.
(c) If you are not a part of the problem, then you are a part of the solution.
(d) (none of the above)

If it’s Tuesday, then it is raining.

(a) If it is not raining, then it is not Tuesday.
(b) If it is raining, then it is Tuesday.
(c) It is raining if and only if it is Tuesday.
A Statement is Logically Equivalent to its Contrapositive

For each statement below, choose the statement that is logically equivalent.

If the year is 1999, then we are partying.

(a) If we are not partying, then the year is not 1999.
(b) If the year is not 1999, then we are not partying.
(c) We are partying if and only if the year is 1999.

If you aren’t part of the solution, you’re part of the problem.

(a) If you are a part of the problem, then you are not a part of the solution.
(b) You are a part of the solution if and only if you are not a part of the problem.
(c) If you are not a part of the problem, then you are a part of the solution.
(d) (none of the above)

If it’s Tuesday, then it is raining.

(a) If it is not raining, then it is not Tuesday.
(b) If it is raining, then it is Tuesday.
(c) It is raining if and only if it is Tuesday.
A Statement is Logically Equivalent to its Contrapositive

For each statement below, choose the statement that is logically equivalent.

If the year is 1999, then we are partying.

(a) If we are not partying, then the year is not 1999.
(b) If the year is not 1999, then we are not partying.
(c) We are partying if and only if the year is 1999.

If you aren’t part of the solution, you’re part of the problem.

(a) If you are a part of the problem, then you are not a part of the solution.
(b) You are a part of the solution if and only if you are not a part of the problem.
(c) If you are not a part of the problem, then you are a part of the solution.
(d) (none of the above)

If it’s Tuesday, then it is raining.

(a) If it is not raining, then it is not Tuesday.
(b) If it is raining, then it is Tuesday.
(c) It is raining if and only if it is Tuesday.
A Statement is Logically Equivalent to its Contrapositive

For each statement below, choose the statement that is logically equivalent.

If the year is 1999, then we are partying.

(a) If we are not partying, then the year is not 1999.
(b) If the year is not 1999, then we are not partying.
(c) We are partying if and only if the year is 1999.

If you aren’t part of the solution, you’re part of the problem.

(a) If you are a part of the problem, then you are not a part of the solution.
(b) You are a part of the solution if and only if you are not a part of the problem.
(c) If you are not a part of the problem, then you are a part of the solution.
(d) (none of the above)

If it’s Tuesday, then it is raining.

(a) If it is not raining, then it is not Tuesday.
(b) If it is raining, then it is Tuesday.
(c) It is raining if and only if it is Tuesday.
Quantifiers

Definition

The **universal quantifier** , ∀, means “for every” or “for all.”

The **existential quantifier** , ∃, means “there is” or “there exists.”
Quantifiers

Definition
The **universal quantifier**, \(\forall \), means “for every” or “for all.”
The **existential quantifier**, \(\exists \), means “there is” or “there exists.”

We write \(\not\exists \) to mean “there does not exist.”
Quantifiers

Definition

The **universal quantifier** \(\forall \), means “for every” or “for all.”

The **existential quantifier** \(\exists \), means “there is” or “there exists.”

We write \(\nexists \) to mean “there does not exist.”

Example: \(\forall \) action, \(\exists \) equal and opposite reaction.
Quantifiers

Definition

The **universal quantifier**, ∀, means “for every” or “for all.”

The **existential quantifier**, ∃, means “there is” or “there exists.”

We write ∄ to mean “there does not exist.”

Example: ∀ action, ∃ equal and opposite reaction.

We often omit “such that,” or replace it with a comma or colon.
Quantifiers

Definition

The **universal quantifier**, \(\forall \), means “for every” or “for all."

The **existential quantifier**, \(\exists \), means “there is” or “there exists."

We write \(\not\exists \) to mean “there does not exist.”

Example: \(\forall \) action, \(\exists \) equal and opposite reaction.

We often omit “such that,” or replace it with a comma or colon.

True or False:

- \(\forall x \in \mathbb{Q}, \frac{1}{x} \in \mathbb{Q}. \)
- \(\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x - y \in \mathbb{Z}. \)
- \(\forall x \in \mathbb{R} - \{0\}, \exists y \in \mathbb{R} \) such that \(xy = 1. \)
- \(\exists x \in \mathbb{R} - \{0\} \) such that \(\forall y \in \mathbb{R}, xy = 1. \)
- \(\forall x \in \mathbb{Q}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z} \) such that \(x = \frac{z}{n}. \)
- \(\forall x \in \mathbb{Z}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z} \) such that \(x = \frac{z}{n}. \)
Quantifiers

Definition

The universal quantifier, \forall, means “for every” or “for all.”

The existential quantifier, \exists, means “there is” or “there exists.”

We write \exists to mean “there does not exist.”

Example: \forall action, \exists equal and opposite reaction.
We often omit “such that,” or replace it with a comma or colon.

True or False:

- $\forall x \in \mathbb{Q}, \frac{1}{x} \in \mathbb{Q}$. **False: $x = 0$**
- $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x - y \in \mathbb{Z}$.
- $\forall x \in \mathbb{R} - \{0\}, \exists y \in \mathbb{R}$ such that $xy = 1$.
- $\exists x \in \mathbb{R} - \{0\}$ such that $\forall y \in \mathbb{R}, xy = 1$.
- $\forall x \in \mathbb{Q}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z}$ such that $x = \frac{z}{n}$.
- $\forall x \in \mathbb{Z}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z}$ such that $x = \frac{z}{n}$.
Quantifiers

Definition

The **universal quantifier**, \(\forall \), means “for every” or “for all.”

The **existential quantifier**, \(\exists \), means “there is” or “there exists.”

We write \(\nabla \) to mean “there does not exist.”

Example: \(\forall \) action, \(\exists \) equal and opposite reaction.

We often omit “such that,” or replace it with a comma or colon.

True or False:

<table>
<thead>
<tr>
<th>Statement</th>
<th>True/False</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall x \in \mathbb{Q}, \frac{1}{x} \in \mathbb{Q}).</td>
<td>False: (x = 0)</td>
</tr>
<tr>
<td>(\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x - y \in \mathbb{Z}).</td>
<td>True</td>
</tr>
<tr>
<td>(\forall x \in \mathbb{R} - {0}, \exists y \in \mathbb{R} \text{ such that } xy = 1).</td>
<td></td>
</tr>
<tr>
<td>(\exists x \in \mathbb{R} - {0} \text{ such that } \forall y \in \mathbb{R}, xy = 1).</td>
<td></td>
</tr>
<tr>
<td>(\forall x \in \mathbb{Q}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z} \text{ such that } x = \frac{z}{n}).</td>
<td></td>
</tr>
<tr>
<td>(\forall x \in \mathbb{Z}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z} \text{ such that } x = \frac{z}{n}).</td>
<td></td>
</tr>
</tbody>
</table>
Quantifiers

Definition

The **universal quantifier**, \forall, means “for every” or “for all.”

The **existential quantifier**, \exists, means “there is” or “there exists.”

We write $\neg\exists$ to mean “there does not exist.”

Example:

\[\forall \text{ action}, \exists \text{ equal and opposite reaction}. \]

We often omit “such that,” or replace it with a comma or colon.

True or False:

- $\forall x \in \mathbb{Q}, \frac{1}{x} \in \mathbb{Q}$.
 False: $x = 0$

- $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x - y \in \mathbb{Z}$.
 True

- $\forall x \in \mathbb{R} - \{0\}, \exists y \in \mathbb{R}$ such that $xy = 1$.

- $\exists x \in \mathbb{R} - \{0\}$ such that $\forall y \in \mathbb{R}, xy = 1$.

- $\forall x \in \mathbb{Q}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z}$ such that $x = \frac{z}{n}$.

- $\forall x \in \mathbb{Z}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z}$ such that $x = \frac{z}{n}$.
Quantifiers

Definition

The **universal quantifier** , ∀, means “for every” or “for all.”

The **existential quantifier** , ∃, means “there is” or “there exists.”

We write ∄ to mean “there does not exist.”

Example: ∀ action, ∃ equal and opposite reaction.
We often omit “such that,” or replace it with a comma or colon.

True or False:

- ∀x ∈ Q, \(\frac{1}{x} \) ∈ Q.
 False: \(x = 0 \)

- ∀x ∈ N, ∃y ∈ N, x − y ∈ Z.
 True

- ∀x ∈ R − \{0\}, ∃y ∈ R such that xy = 1.
 False: \(y = \frac{1}{x} \)

- ∃x ∈ R − \{0\} such that ∀y ∈ R, xy = 1.
 True

- ∀x ∈ Q, ∀n ∈ N, ∃z ∈ Z such that x = \(\frac{z}{n} \).
 False: \(x = \frac{1}{0} \)

- ∀x ∈ Z, ∀n ∈ N, ∃z ∈ Z such that x = \(\frac{z}{n} \).
 True
Quantifiers

Definition

The **universal quantifier**, \forall, means “for every” or “for all.”

The **existential quantifier**, \exists, means “there is” or “there exists.”

We write $\neg\exists$ to mean “there does not exist.”

Example: \forall action, \exists equal and opposite reaction.
We often omit “such that,” or replace it with a comma or colon.

True or False:

- $\forall x \in \mathbb{Q}, \frac{1}{x} \in \mathbb{Q}$.
 False: $x = 0$

- $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x - y \in \mathbb{Z}$.
 True

- $\forall x \in \mathbb{R} - \{0\}, \exists y \in \mathbb{R}$ such that $xy = 1$.
 True: $y = \frac{1}{x}$

- $\exists x \in \mathbb{R} - \{0\}$ such that $\forall y \in \mathbb{R}, xy = 1$.
 False: $y = 0$

- $\forall x \in \mathbb{Q}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z}$ such that $x = \frac{z}{n}$.
 False: $x = \frac{1}{3}, n = 2$

- $\forall x \in \mathbb{Z}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z}$ such that $x = \frac{z}{n}$.
 True
Quantifiers

Definition

The **universal quantifier**, \forall, means “for every” or “for all.”

The **existential quantifier**, \exists, means “there is” or “there exists.”

We write $\not\exists$ to mean “there does not exist.”

Example: \forall action, \exists equal and opposite reaction.
We often omit “such that,” or replace it with a comma or colon.

True or False:

- $\forall x \in \mathbb{Q}, \frac{1}{x} \in \mathbb{Q}.$ \hspace{1cm} False: $x = 0$
- $\forall x \in \mathbb{N}, \forall y \in \mathbb{N}, x - y \in \mathbb{Z}.$ \hspace{1cm} True
- $\forall x \in \mathbb{R} - \{0\}, \exists y \in \mathbb{R}$ such that $xy = 1.$ \hspace{1cm} True: $y = \frac{1}{x}$
- $\exists x \in \mathbb{R} - \{0\}$ such that $\forall y \in \mathbb{R}, xy = 1.$ \hspace{1cm} False: $y = 0$
- $\forall x \in \mathbb{Q}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z}$ such that $x = \frac{z}{n}.$ \hspace{1cm} False: $x = \frac{1}{3}, n = 2$
- $\forall x \in \mathbb{Z}, \forall n \in \mathbb{N}, \exists z \in \mathbb{Z}$ such that $x = \frac{z}{n}.$ \hspace{1cm} True: $z = xn$
Fill in the Blank

Fill in each of the boxes with \forall, \exists, or \exists^\neg. If multiple answers are possible, choose the best.

\square integer n, $2n$ is even.

\square integer n, $3n$ is even.

\square real $x \neq 0$, \square real y such that $xy = 1$.

\square real x such that $\forall y \in \mathbb{R}$, $xy = 0$.

\square $x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}$, $xy \neq 0$.
Fill in each of the boxes with \forall, \exists, or $\not\exists$. If multiple answers are possible, choose the best.

- \forall integer n, $2n$ is even.
 - Also \exists is true.

- \exists integer n, $3n$ is even.

- $\not\exists$ integer n, $3n$ is even.

- $\not\exists$ integer n, $3n$ is even.

- \forall real $x \neq 0$, \exists real y such that $xy = 1$.
 - Since x is nonzero, choose $y = \frac{1}{x}$.

- \exists real x such that $\forall y \in \mathbb{R}$, $xy = 0$.
 - That x is $x = 0$.

- $\not\exists$ real x such that $\forall y \in \mathbb{R}$, $xy \neq 0$.
 - No x has $xy \neq 0$ when $y = 0$.
Fill in each of the boxes with \forall, \exists, or $\not\exists$. If multiple answers are possible, choose the best.

\forall integer n, $2n$ is even. Also \exists is true.

\exists integer n, $3n$ is even. For example, $n = 2$.

$\not\exists$ real $x \neq 0$, \exists real y such that $xy = 1$.

\exists real x such that $\forall y \in \mathbb{R}$, $xy = 0$.

$\not\exists$ $x \in \mathbb{R}$ such that $\forall y \in \mathbb{R}$, $xy \neq 0$.
Fill in each of the boxes with ∀, ∃, or ∄. If multiple answers are possible, choose the best.

∀ integer \(n \), \(2n \) is even.
Also \(∃ \) is true.

∃ integer \(n \), \(3n \) is even.
For example, \(n = 2 \).

∀ real \(x \neq 0 \), ∃ real \(y \) such that \(xy = 1 \). Since \(x \) is nonzero, choose \(y = \frac{1}{x} \).

∀ real \(x \) such that \(\forall y \in \mathbb{R}, xy = 0 \).

∀ real \(x \in \mathbb{R} \) such that \(\forall y \in \mathbb{R}, xy \neq 0 \).
Fill in each of the boxes with \(\forall, \exists, \) or \(\not\exists \). If multiple answers are possible, choose the best.

\(\forall \) integer \(n \), \(2n \) is even.

Also \(\exists \) is true.

\(\exists \) integer \(n \), \(3n \) is even.

For example, \(n = 2 \).

\(\forall \) real \(x \neq 0 \), \(\exists \) real \(y \) such that \(xy = 1 \). Since \(x \) is nonzero, choose \(y = \frac{1}{x} \).

\(\exists \) real \(x \) such that \(\forall y \in \mathbb{R}, xy = 0 \).

That \(x \) is \(x = 0 \).

\(\not\exists \) \(x \in \mathbb{R} \) such that \(\forall y \in \mathbb{R}, xy \neq 0 \).
Fill in each of the boxes with \(\forall \), \(\exists \), or \(\nexists \). If multiple answers are possible, choose the best.

\[\forall \text{ integer } n, 2n \text{ is even.} \] Also \(\exists \) is true.

\[\exists \text{ integer } n, 3n \text{ is even.} \] For example, \(n = 2 \).

\[\forall \text{ real } x \neq 0, \exists \text{ real } y \text{ such that } xy = 1. \] Since \(x \) is nonzero, choose \(y = \frac{1}{x} \).

\[\exists \text{ real } x \text{ such that } \forall y \in \mathbb{R}, xy = 0. \] That \(x \) is \(x = 0 \).

\[\forall x \in \mathbb{R} \text{ such that } \forall y \in \mathbb{R}, xy \neq 0. \] No \(x \) has \(xy \neq 0 \) when \(y = 0 \).
Conditional Statements with Variables

Every universally qualified statement (that is, a statement containing “∀”) can be expressed as a conditional statement with a variable.
Conditional Statements with Variables

Every universally qualified statement (that is, a statement containing “∀”) can be expressed as a conditional statement with a variable.

∀x ∈ N, x > 0
Conditional Statements with Variables

Every universally qualified statement (that is, a statement containing “∀”) can be expressed as a conditional statement with a variable.

\[\forall x \in \mathbb{N}, \ x > 0 \]
\[x \in \mathbb{N} \Rightarrow x > 0 \]
Every universally qualified statement (that is, a statement containing “∀”) can be expressed as a conditional statement with a variable.

∀x ∈ ℕ, x > 0
x ∈ ℕ ⇒ x > 0

∀x, y ∈ ℚ, xy ∈ ℚ
Every universally qualified statement (that is, a statement containing “∀”) can be expressed as a conditional statement with a variable.

∀x ∈ N, x > 0
x ∈ N ⇒ x > 0

∀x, y ∈ Q, xy ∈ Q
x, y ∈ Q ⇒ xy ∈ Q
Every rational number is also a real number.

If x is a rational number, then x^2 is rational as well.

Every integer is even or odd.

No real number is both even and irrational.

Every quadratic function with real coefficients has at least one (possibly complex) root.

(\mathbb{C} is the set of complex numbers.)
Every rational number is also a real number.
\(\forall r \in \mathbb{Q}, \ r \in \mathbb{R} \)
\(\mathbb{Q} \subseteq \mathbb{R} \)

If \(x \) is a rational number, then \(x^2 \) is rational as well.

Every integer is even or odd.

No real number is both even and irrational.

Every quadratic function with real coefficients has at least one (possibly complex) root.

(\(\mathbb{C} \) is the set of complex numbers.)
Translating English to Symbolic Logic

Every rational number is also a real number.
\(\forall r \in \mathbb{Q}, \ r \in \mathbb{R} \)
\(\mathbb{Q} \subseteq \mathbb{R} \)

If \(x \) is a rational number, then \(x^2 \) is rational as well.
\(x \in \mathbb{R} \Rightarrow x^2 \in \mathbb{R} \)
\(\forall x \in \mathbb{R}, \ x^2 \in \mathbb{R} \).

Every integer is even or odd.

No real number is both even and irrational.

Every quadratic function with real coefficients has at least one (possibly complex) root.
(\(\mathbb{C} \) is the set of complex numbers.)
Every rational number is also a real number.
\[\forall r \in \mathbb{Q}, \ r \in \mathbb{R} \]
\[\mathbb{Q} \subseteq \mathbb{R} \]

If \(x \) is a rational number, then \(x^2 \) is rational as well.
\[x \in \mathbb{R} \Rightarrow x^2 \in \mathbb{R} \]
\[\forall x \in \mathbb{R}, \ x^2 \in \mathbb{R} \]

Every integer is even or odd.
\[\forall z \in \mathbb{Z}, \ (z \text{ even}) \lor (z \text{ odd}) \]

No real number is both even and irrational.

Every quadratic function with real coefficients has at least one (possibly complex) root.
(\(\mathbb{C} \) is the set of complex numbers.)
Translating English to Symbolic Logic

Every rational number is also a real number.
\[\forall r \in \mathbb{Q}, \ r \in \mathbb{R} \]
\[\mathbb{Q} \subseteq \mathbb{R} \]

If \(x \) is a rational number, then \(x^2 \) is rational as well.
\[x \in \mathbb{R} \Rightarrow x^2 \in \mathbb{R} \]
\[\forall x \in \mathbb{R}, \ x^2 \in \mathbb{R}. \]

Every integer is even or odd.
\[\forall z \in \mathbb{Z}, \ (z \text{ even}) \lor (z \text{ odd}) \]

No real number is both even and irrational.
\[\forall x \in \mathbb{R}, \ \sim (x \text{ even } \land x \notin \mathbb{Q}) \]

Every quadratic function with real coefficients has at least one (possibly complex) root.
(\(\mathbb{C} \) is the set of complex numbers.)
Every rational number is also a real number.
\[\forall r \in \mathbb{Q}, \; r \in \mathbb{R} \]
\[\mathbb{Q} \subseteq \mathbb{R} \]

If \(x \) is a rational number, then \(x^2 \) is rational as well.
\[x \in \mathbb{R} \Rightarrow x^2 \in \mathbb{R} \]
\[\forall x \in \mathbb{R}, \; x^2 \in \mathbb{R}. \]

Every integer is even or odd.
\[\forall z \in \mathbb{Z}, \; (z \text{ even}) \lor (z \text{ odd}) \]

No real number is both even and irrational.
\[\forall x \in \mathbb{R}, \; \sim (x \text{ even} \; \land \; x \notin \mathbb{Q}) \]

Every quadratic function with real coefficients has at least one (possibly complex) root.
(\(\mathbb{C} \) is the set of complex numbers.)
\[\forall a, b, c \in \mathbb{R}, \; \exists x \in \mathbb{C}, \; ax^2 + bx + c = 0. \]
At least one of the numbers \(x \) and \(y \) is even.
At least one of the numbers \(x \) and \(y \) is even.

\((x \text{ even}) \lor (y \text{ even})\)
Translating

At least one of the numbers x and y is even.
$(x \text{ even}) \lor (y \text{ even})$

x is even, but y is odd

Whenever x is a perfect square, x^3 is as well.

P is true only if Q is true.
(For example: "I sing only if I’m in the shower.")

P is true if Q is true.
(For example: "I sing if I’m in the shower.")
Translating

At least one of the numbers x and y is even.

\[(x \text{ even}) \lor (y \text{ even})\]

x is even, but y is odd

\[(x \text{ even}) \land (y \text{ odd})\]

Whenever x is a perfect square, x^3 is as well.

P is true only if Q is true.

(For example: "I sing only if I’m in the shower.")

P is true if Q is true.

(For example: "I sing if I’m in the shower.")
At least one of the numbers x and y is even.
$(x \text{ even}) \lor (y \text{ even})$

x is even, but y is odd
$(x \text{ even}) \land (y \text{ odd})$

Whenever x is a perfect square, x^3 is as well.
$\sqrt{x} \in \mathbb{Z} \Rightarrow \sqrt{x^3} \in \mathbb{Z}$

P is true only if Q is true.
(For example: ”I sing only if I’m in the shower.”)

P is true if Q is true.
(For example: ”I sing if I’m in the shower.”)
Translating

At least one of the numbers x and y is even.

$$(x \text{ even}) \lor (y \text{ even})$$

x is even, but y is odd

$$(x \text{ even}) \land (y \text{ odd})$$

Whenever x is a perfect square, x^3 is as well.

$$\sqrt{x} \in \mathbb{Z} \Rightarrow \sqrt{x^3} \in \mathbb{Z}$$

P is true only if Q is true.

(For example: "I sing only if I’m in the shower.")

$P \Rightarrow Q$

P is true if Q is true.

(For example: "I sing if I’m in the shower.")
Translating

At least one of the numbers \(x \) and \(y \) is even.
\((x \text{ even}) \lor (y \text{ even})\)

\(x \) is even, but \(y \) is odd
\((x \text{ even}) \land (y \text{ odd})\)

Whenever \(x \) is a perfect square, \(x^3 \) is as well.
\(\sqrt{x} \in \mathbb{Z} \Rightarrow \sqrt{x^3} \in \mathbb{Z}\)

\(P \) is true only if \(Q \) is true.
(For example: "I sing only if I’m in the shower.")
\(P \Rightarrow Q \)

\(P \) is true if \(Q \) is true.
(For example: "I sing if I’m in the shower.")
\(Q \Rightarrow P \)
\(P \Leftarrow Q \)
Negating Statements using DeMorgan’s Laws

DeMorgan’s Laws

\[
\begin{align*}
\neg (P \land Q) & \iff (\neg P) \lor (\neg Q) \\
\neg (P \lor Q) & \iff (\neg P) \land (\neg Q)
\end{align*}
\]
Negating Statements using DeMorgan’s Laws

DeMorgan’s Laws

\[
\sim (P \land Q) \iff (\sim P) \lor (\sim Q) \\\n\sim (P \lor Q) \iff (\sim P) \land (\sim Q)
\]

A number can’t be both even and odd.

Ted isn’t smart or handsome.
Negating Statements using DeMorgan’s Laws

DeMorgan’s Laws

\[
\begin{align*}
\sim (P \land Q) & \iff (\sim P) \lor (\sim Q) \\
\sim (P \lor Q) & \iff (\sim P) \land (\sim Q)
\end{align*}
\]

A number can’t be both even and odd.
\[
\forall x \sim [(x \text{ even}) \land (x \text{ odd})] = \\
\forall x (\sim (x \text{ even})) \lor (\sim (x \text{ odd}))
\]

Ted isn’t smart or handsome.
DeMorgan’s Laws

\[\sim (P \land Q) \iff (\sim P) \lor (\sim Q) \]

\[\sim (P \lor Q) \iff (\sim P) \land (\sim Q) \]

A number can’t be both even and odd.
\[\forall x \sim [(x \text{ even}) \land (x \text{ odd})] = \]
\[\forall x (\sim (x \text{ even})) \lor (\sim (x \text{ odd})) \]

Ted isn’t smart or handsome.
\[\sim [(Ted \text{ is smart}) \lor (Ted \text{ is handsome})] = \]
\[(\sim (Ted \text{ is smart})) \land (\sim (Ted \text{ is handsome})) \]
Negating Quantified Statements

P: Every swan is white.
Negating Quantified Statements

\(P: \) Every swan is white.
\(\sim P: \) At least one swan is not white.
Negating Quantified Statements

\[P: \text{ Every swan is white.} \]
\[\sim P: \text{ At least one swan is not white.} \]

\[Q: \text{ No student gets an A.} \]
Negating Quantified Statements

\[P: \text{Every swan is white.} \]
\[\sim P: \text{At least one swan is not white.} \]

\[Q: \text{No student gets an A.} \]
\[\sim Q: \text{At least one student gets an A.} \]
Negating Quantified Statements

\(P: \) Every swan is white.
\(\sim P: \) At least one swan is not white.

\(Q: \) No student gets an A.
\(\sim Q: \) At least one student gets an A.

\(R: \) Everything in the library is also on the internet.
Negating Quantified Statements

\[P: \text{Every swan is white.} \]
\[\sim P: \text{At least one swan is not white.} \]

\[Q: \text{No student gets an A.} \]
\[\sim Q: \text{At least one student gets an A.} \]

\[R: \text{Everything in the library is also on the internet.} \]
\[\sim R: \text{At least one thing in the library is not also on the internet.} \]
Negating Quantified Statements

\[P: \text{Every swan is white.}\]
\[\sim P: \text{At least one swan is not white.}\]

\[Q: \text{No student gets an A.}\]
\[\sim Q: \text{At least one student gets an A.}\]

\[R: \text{Everything in the library is also on the internet.}\]
\[\sim R: \text{At least one thing in the library is not also on the internet.}\]

\[S: \text{There exists a human who has walked on the moon.}\]
Negating Quantified Statements

\[P: \text{ Every swan is white.} \]
\[\sim P: \text{ At least one swan is not white.} \]

\[Q: \text{ No student gets an A.} \]
\[\sim Q: \text{ At least one student gets an A.} \]

\[R: \text{ Everything in the library is also on the internet.} \]
\[\sim R: \text{ At least one thing in the library is not also on the internet.} \]

\[S: \text{ There exists a human who has walked on the moon.} \]
\[\sim S: \text{ No human has walked on the moon.} \]
\[\sim S: \text{ For every human } H, \ H \text{ has not walked on the moon.} \]
Negating Quantified Statements

\(P \): Every swan is white.
\(\sim P \): At least one swan is not white.

\(Q \): No student gets an A.
\(\sim Q \): At least one student gets an A.

\(R \): Everything in the library is also on the internet.
\(\sim R \): At least one thing in the library is not also on the internet.

\(S \): There exists a human who has walked on the moon.
\(\sim S \): No human has walked on the moon.
\(\sim S \): For every human \(H \), \(H \) has not walked on the moon.

\(\sim (\forall x \in A, P(x)) = \exists x \in A, \sim P(x) \)
\(\sim (\exists x \in A, P(x)) = \forall x \in A, \sim P(x) \)
Negating Statements with Multiple Quantifiers

\(~ (\forall x \in A, P(x)) = \exists x \in A, ~ P(x)\)
\(~ (\exists x \in A, P(x)) = \forall x \in A, ~ P(x)\)

\(P: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^3 = x.\)
That is: \(P\) says that every real number has a real cube root.

\(Q: \exists x \in \mathbb{Z}, \forall y \in \mathbb{R}, xy = 0.\)
That is: there is some integer \(x\) such that \(xy = 0\) for every real number \(y\).

\(\forall A \subseteq \mathbb{N}, \exists a \in A, \forall b \in A a \leq b\)
Every subset of the natural numbers has a smallest element.

\(\forall x \in \mathbb{R}, \forall y \in \mathbb{Z}, \exists z \in \{-5, 3.8\}, xyz \geq 0\)
Negating Statements with Multiple Quantifiers

\[\sim (\forall x \in A, P(x)) = \exists x \in A, \sim P(x) \]
\[\sim (\exists x \in A, P(x)) = \forall x \in A, \sim P(x) \]

\(P: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^3 = x. \)
That is: \(P \) says that every real number has a real cube root.
\[\sim P: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^3 \neq x. \]
That is: \(\sim P \) says that there exists some real number such that every real number is not its cube root.

\(Q: \exists x \in \mathbb{Z}, \forall y \in \mathbb{R}, xy = 0. \)
That is: there is some integer \(x \) such that \(xy = 0 \) for every real number \(y \).

\(\forall A \subseteq \mathbb{N}, \exists a \in A, \forall b \in A \ a \leq b \)
Every subset of the natural numbers has a smallest element.

\(\forall x \in \mathbb{R}, \forall y \in \mathbb{Z}, \exists z \in \{-5, 3.8\}, xyz \geq 0 \)
Negating Statements with Multiple Quantifiers

\[\sim (\forall x \in A, P(x)) = \exists x \in A, \sim P(x) \]
\[\sim (\exists x \in A, P(x)) = \forall x \in A, \sim P(x) \]

\textbf{P:} \quad \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^3 = x.
That is: \textbf{P} says that every real number has a real cube root.
\textbf{\sim P:} \quad \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^3 \neq x.
That is: \textbf{\sim P} says that there exists some real number such that every real number is not its cube root.

\textbf{Q:} \quad \exists x \in \mathbb{Z}, \forall y \in \mathbb{R}, xy = 0.
That is: there is some integer \(x \) such that \(xy = 0 \) for every real number \(y \).
\textbf{\sim Q:} \quad \forall x \in \mathbb{Z}, \exists y \in \mathbb{R}, xy \neq 0.
That is: for every integer \(x \), there is some real number \(y \) such that \(xy \neq 0 \).

\forall A \subseteq \mathbb{N}, \exists a \in A, \forall b \in A \ a \leq b
Every subset of the natural numbers has a smallest element.

\forall x \in \mathbb{R}, \forall y \in \mathbb{Z}, \exists z \in \{-5, 3.8\}, xyz \geq 0
Negating Statements with Multiple Quantifiers

\[
\sim (\forall x \in A, P(x)) = \exists x \in A, \sim P(x)
\]

\[
\sim (\exists x \in A, P(x)) = \forall x \in A, \sim P(x)
\]

\(P: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^3 = x.\)
That is: \(P\) says that every real number has a real cube root.

\(\sim P: \exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^3 \neq x.\)
That is: \(\sim P\) says that there exists some real number such that every real number is not its cube root.

\(Q: \exists x \in \mathbb{Z}, \forall y \in \mathbb{R}, xy = 0.\)
That is: there is some integer \(x\) such that \(xy = 0\) for every real number \(y\).

\(\sim Q: \forall x \in \mathbb{Z}, \exists y \in \mathbb{R}, xy \neq 0.\)
That is: for every integer \(x\), there is some real number \(y\) such that \(xy \neq 0\).

\(\forall A \subseteq \mathbb{N}, \exists a \in A, \forall b \in A \ a \leq b\)
Every subset of the natural numbers has a smallest element.

\(\exists A \subseteq \mathbb{N}, \forall a \in A, \exists b \in A, a > b\)
There is some subset of the natural numbers so that, no matter what element we choose, there is some element that is smaller.

\(\forall x \in \mathbb{R}, \forall y \in \mathbb{Z}, \exists z \in \{-5, 3.8\}, xyz \geq 0\)
Negating Statements with Multiple Quantifiers

\[\sim (\forall x \in A, P(x)) = \exists x \in A, \sim P(x)\]
\[\sim (\exists x \in A, P(x)) = \forall x \in A, \sim P(x)\]

P: \(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y^3 = x.\)
That is: \(P\) says that every real number has a real cube root.

\(\sim P:\) \(\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^3 \neq x.\)
That is: \(\sim P\) says that there exists some real number such that every real number is not its cube root.

Q: \(\exists x \in \mathbb{Z}, \forall y \in \mathbb{R}, xy = 0.\)
That is: there is some integer \(x\) such that \(xy = 0\) for every real number \(y\).

\(\sim Q:\) \(\forall x \in \mathbb{Z}, \exists y \in \mathbb{R}, xy \neq 0.\)
That is: for every integer \(x\), there is some real number \(y\) such that \(xy \neq 0\).

∀A ⊆ N, ∃a ∈ A, ∀b ∈ A a ≤ b
Every subset of the natural numbers has a smallest element.

∃A ⊆ N, ∀a ∈ A, ∃b ∈ A, a > b
There is some subset of the natural numbers so that, no matter what element we choose, there is some element that is smaller.

\(\forall x \in \mathbb{R}, \forall y \in \mathbb{Z}, \exists z \in \{-5, 3.8\}, xyz \geq 0\)
\(\exists x \in \mathbb{R}, \exists y \in \mathbb{Z}, \forall z \in \{-5, 3.8\}, xyz < 0\)
\(\exists x \in \mathbb{R}, \exists y \in \mathbb{Z}, [(-5xy < 0) \land (3.8xy < 0)]\)
Negating Conditional Statements

\[\forall x \in \mathbb{R}, \left[\frac{x}{9} \in \mathbb{Z} \Rightarrow \frac{x}{3} \in \mathbb{Z} \right] \]

\[\forall x \in \mathbb{Z}, \left[x < a \Rightarrow x^2 < a^2 \right] \]

\[\forall x, y, z, n \in \mathbb{N}, \left[(x^n + y^n = z^n) \Rightarrow n \in \{1, 2\} \right] \]

Fermat’s Last Theorem

\[\forall \text{ function } f(x), \forall a < b \in \mathbb{R}, \left[f(x) \text{ continuous on } [a, b] \right] \Rightarrow \left[\forall N \text{ between } f(a) \text{ and } f(b), \exists c \in (a, b), f(c) = N \right] \]

Intermediate Value Theorem
Negating Conditional Statements

\[\forall x \in \mathbb{R}, \left[\frac{x}{9} \in \mathbb{Z} \Rightarrow \frac{x}{3} \in \mathbb{Z} \right] \]
\[\exists x \in \mathbb{R}, \left[\frac{x}{9} \in \mathbb{Z} \land \frac{x}{3} \notin \mathbb{Z} \right] \]

\[\forall x \in \mathbb{Z}, \left[x < a \Rightarrow x^2 < a^2 \right] \]

\[\forall x, y, z, n \in \mathbb{N}, \left[(x^n + y^n = z^n) \Rightarrow n \in \{1, 2\} \right]. \]
Fermat’s Last Theorem

\[\forall \text{ function } f(x), \forall a < b \in \mathbb{R}, \left[f(x) \text{ continuous on } [a, b] \right] \Rightarrow \]
\[[\forall N \text{ between } f(a) \text{ and } f(b), \exists c \in (a, b), f(c) = N] \]
Intermediate Value Theorem
Negating Conditional Statements

\[\forall x \in \mathbb{R}, \left[\frac{x}{9} \in \mathbb{Z} \implies \frac{x}{3} \in \mathbb{Z} \right] \]
\[\exists x \in \mathbb{R}, \left[\frac{x}{9} \in \mathbb{Z} \land \frac{x}{3} \notin \mathbb{Z} \right] \]

\[\forall x \in \mathbb{Z}, \left[x < a \implies x^2 < a^2 \right] \]
\[\exists x \in \mathbb{Z}, \left[(x < a) \land (x^2 \geq a^2) \right] \]

\[\forall x, y, z, n \in \mathbb{N}, \left[(x^n + y^n = z^n) \implies n \in \{1, 2\} \right]. \]
Fermat’s Last Theorem

\[\forall \text{ function } f(x), \forall a < b \in \mathbb{R}, \left[f(x) \text{ continuous on } [a, b] \right] \implies \left[\forall N \text{ between } f(a) \text{ and } f(b), \exists c \in (a, b), f(c) = N \right] \]
Intermediate Value Theorem
Negating Conditional Statements

\[\forall x \in \mathbb{R}, \left[\frac{x}{9} \in \mathbb{Z} \Rightarrow \frac{x}{3} \in \mathbb{Z} \right] \]
\[\exists x \in \mathbb{R}, \left[\frac{x}{9} \in \mathbb{Z} \land \frac{x}{3} \notin \mathbb{Z} \right] \]

\[\forall x \in \mathbb{Z}, \left[x < a \Rightarrow x^2 < a^2 \right] \]
\[\exists x \in \mathbb{Z}, \left[(x < a) \land (x^2 \geq a^2) \right] \]

\[\forall x, y, z, n \in \mathbb{N}, \left[(x^n + y^n = z^n) \Rightarrow n \in \{1, 2\} \right]. \]
Fermat’s Last Theorem
\[\exists x, y, z, n \in \mathbb{N}, \left[(x^n + y^n = z^n) \land (n > 2) \right] \]

\[\forall \text{ function } f(x), \forall a < b \in \mathbb{R}, \left[f(x) \text{ continuous on } [a, b] \right] \Rightarrow \]
[\forall N \text{ between } f(a) \text{ and } f(b), \exists c \in (a, b), f(c) = N]\nIntermediate Value Theorem
Negating Conditional Statements

\[\forall x \in \mathbb{R}, \left[\frac{x}{9} \in \mathbb{Z} \Rightarrow \frac{x}{3} \in \mathbb{Z} \right] \]
\[\exists x \in \mathbb{R}, \left[\frac{x}{9} \in \mathbb{Z} \land \frac{x}{3} \not\in \mathbb{Z} \right] \]

\[\forall x \in \mathbb{Z}, \left[x < a \Rightarrow x^2 < a^2 \right] \]
\[\exists x \in \mathbb{Z}, \left[(x < a) \land (x^2 \geq a^2) \right] \]

\[\forall x, y, z, n \in \mathbb{N}, \left[(x^n + y^n = z^n) \Rightarrow n \in \{1, 2\} \right]. \]
Fermat’s Last Theorem
\[\exists x, y, z, n \in \mathbb{N}, \left[(x^n + y^n = z^n) \land (n > 2) \right] \]

\[\forall \text{ function } f(x), \forall a < b \in \mathbb{R}, \left[f(x) \text{ continuous on } [a, b] \right] \Rightarrow \]
\[\forall N \text{ between } f(a) \text{ and } f(b), \exists c \in (a, b), f(c) = N \]
Intermediate Value Theorem
\[\exists \text{ function } f(x), \exists a < b \in \mathbb{R}, \left[f(x) \text{ continuous on } [a, b] \right] \land \]
\[\exists N \text{ between } f(a) \text{ and } f(b), \forall c \in (a, b), f(c) \neq N \]
Logical Inference

Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.
Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- $P \Rightarrow Q$
2. Logic

2.1 Statements

2.2 And, Or, Not

2.3 Conditional Statements

2.4 Biconditional Statements

2.5 Truth Tables for Statements

2.6 Logical Equivalence

2.7 Quantifiers

2.8 More on Conditional Statements

2.9 Translating English to Symbolic Logic

2.10 Negating Statements

2.11 Logical Inference

Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- \(P \Rightarrow Q \)
- \(P \)
Logical Inference

Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- \(P \Rightarrow Q \)
- \(P \)
- Therefore, \(Q \).
Logical Inference

Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- $P \implies Q$
- P
- **Therefore, Q.**
- $P \implies Q$
- $\sim Q$
Logical Inference

Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- \(P \implies Q \)
- \(P \)
- Therefore, \(Q \).
- \(P \implies Q \)
- \(\sim Q \)
- Therefore, \(\sim P \).
Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called \textbf{logical inference}.

- $P \Rightarrow Q$
- P
- Therefore, Q.
- $P \Rightarrow Q$
- $\sim Q$
- Therefore, $\sim P$.
- $P \lor Q$
- $\sim P$
Logical Inference

Definition
Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- $P \Rightarrow Q$
- P
- Therefore, Q.
- $P \Rightarrow Q$
- $\sim Q$
- Therefore, $\sim P$.
- $P \lor Q$
- $\sim P$
- Therefore, Q.
Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- $P \Rightarrow Q$
- P
- Therefore, Q.

- $P \Rightarrow Q$
- $\sim Q$
- Therefore, $\sim P$.

- $P \lor Q$
- $\sim (P \land Q)$
- Therefore, $\sim Q$.

- $P \land Q$
- P
- Therefore, Q.
Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- \(P \implies Q \)
- \(P \)
- Therefore, \(Q \).

- \(P \implies Q \)
- \(\sim Q \)
- Therefore, \(\sim P \).

- \(P \lor Q \)
- \(\sim (P \land Q) \)
- \(P \land Q \)
- Therefore, \(Q \).
- Also therefore, \(P \).
Logical Inference

Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- $P \Rightarrow Q$
- P
- Therefore, Q.
- $P \Rightarrow Q$
- $\sim Q$
- Therefore, $\sim P$.
- $P \lor Q$
- $\sim P$
- Therefore, Q.
- $P \land Q$
- Therefore, Q.
- Also therefore, P.
- P
Logical Inference

Definition
Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- \(P \implies Q \)
- \(P \)
- Therefore, \(Q \).
- \(P \implies Q \)
- \(\sim Q \)
- Therefore, \(\sim P \).
- \(P \lor Q \)
- \(\sim P \)
- Therefore, \(Q \).
- \(P \land Q \)
- Therefore, \(Q \).
- Also therefore, \(P \).
- \(P \)
- Therefore, \(P \lor Q \).
Logical Inference

Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- \(P \implies Q \)
- \(P \)
- Therefore, \(Q \).

- \(P \implies Q \)
- \(\sim Q \)
- Therefore, \(\sim P \).

- \(P \lor Q \)
- \(\sim (P \land Q) \)
- \(P \)
- Therefore, \(P \lor Q \).

- \(P \land Q \)
- \(\sim P \)
- Therefore, \(Q \).
Logical Inference

Definition

Given two true statements, we can conclude using pure logic that a third is true. This process is called **logical inference**.

- $P \implies Q$
- P
- Therefore, Q.

- $P \implies Q$
- $\sim Q$
- Therefore, $\sim P$.

- $P \lor Q$
- $\sim (P \land Q)$
- Therefore, $\sim Q$.

- $P \land Q$
- Therefore, Q.
- Also therefore, P.

- P
- Therefore, $P \lor Q$.
Transition to Proofs

We won’t usually write out these formal symbols while we’re proving something, but the logic behind them is always in the back of our minds.