Functions as Relations

\[f(x) = x^2 \]
Functions as Relations

\[f(x) = x^2 \]

\[\{(x, y) \in \mathbb{R}^2 : x^2 = y\} \subseteq \mathbb{R} \times \mathbb{R} \]
Functions as Relations

\[f(x) = x^2 \]

\[\{(x, y) \in \mathbb{R}^2 : x^2 = y\} \subseteq \mathbb{R} \times \mathbb{R} \]

\(xRy \) if and only if \(x^2 = y \)
Functions as Relations

\[f(x) = x^2 \]

\[\{(x, y) \in \mathbb{R}^2 : x^2 = y\} \subseteq \mathbb{R} \times \mathbb{R} \]

\(xRy\) if and only if \(x^2 = y\)

Function

Suppose \(A\) and \(B\) are sets. A **function** \(f\) from \(A\) to \(B\) (denoted as \(f : A \rightarrow B\)) is a relation \(f \subseteq A \times B\), satisfying the property that for each \(a \in A\) the relation \(f\) contains exactly one ordered pair of the form \((a, b)\). (Functions pass the vertical line test.)

The statement \((a, b) \in f\) is abbreviated \(f(a) = b\).
Functions as Relations

\[f(x) = x^2 \]

\(\{(x, y) \in \mathbb{R}^2 : x^2 = y\} \subseteq \mathbb{R} \times \mathbb{R} \)

\(xRy \) if and only if \(x^2 = y \)

Function

Suppose \(A \) and \(B \) are sets. A **function** \(f \) from \(A \) to \(B \) (denoted as \(f : A \to B \)) is a relation \(f \subseteq A \times B \), satisfying the property that for each \(a \in A \) the relation \(f \) contains exactly one ordered pair of the form \((a, b) \).

(Functions pass the vertical line test.)

The statement \((a, b) \in f \) is abbreviated \(f(a) = b \).

\(\{(1, 2), (2, 4), (3, 6), (2.7, 5.4), (\pi, 2\pi), \ldots\} \)

\(\{(1, -1), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), \ldots\} \)
\[f(x) = x^2 \]

\(\{(x, y) \in \mathbb{R}^2 : x^2 = y\} \subseteq \mathbb{R} \times \mathbb{R} \)

\(xRy \) if and only if \(x^2 = y \)

Function

Suppose \(A \) and \(B \) are sets. A **function** \(f \) from \(A \) to \(B \) (denoted as \(f : A \to B \)) is a relation \(f \subseteq A \times B \), satisfying the property that for each \(a \in A \) the relation \(f \) contains exactly one ordered pair of the form \((a, b)\).

(Functions pass the vertical line test.)

The statement \((a, b) \in f\) is abbreviated \(f(a) = b \).

\(\{(1, 2), (2, 4), (3, 6), (2.7, 5.4), (\pi, 2\pi), \ldots\} \)

\(f : \mathbb{R} \to \mathbb{R}, \; f(x) = 2x \)

\(\{(1, -1), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), \ldots\} \)
Functions as Relations

\[f(x) = x^2 \]

\[\{(x, y) \in \mathbb{R}^2 : x^2 = y\} \subseteq \mathbb{R} \times \mathbb{R} \]

\(xRy \) if and only if \(x^2 = y \)

Function

Suppose \(A \) and \(B \) are sets. A **function** \(f \) from \(A \) to \(B \) (denoted as \(f : A \rightarrow B \)) is a relation \(f \subseteq A \times B \), satisfying the property that for each \(a \in A \) the relation \(f \) contains exactly one ordered pair of the form \((a, b)\). (Functions pass the vertical line test.)

The statement \((a, b) \in f\) is abbreviated \(f(a) = b \).

\[\{(1, 2), (2, 4), (3, 6), (2.7, 5.4), (\pi, 2\pi), \ldots\} \]
\[f : \mathbb{R} \rightarrow \mathbb{R}, \ f(x) = 2x \]

\[\{(1, -1), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), \ldots\} \]
Not a function: \(f(1) \) has two values.
Function Vocabulary

Function

Let $f : A \rightarrow B$ be a function. We call A the \textbf{domain} of f, and B the \textbf{codomain} of f. The \textbf{range} of f is $\{f(a) : a \in A\}$.
Function Vocabulary

Function

Let $f : A \rightarrow B$ be a function. We call A the **domain** of f, and B the **codomain** of f. The **range** of f is $\{ f(a) : a \in A \}$.

- $f : (0, \infty) \rightarrow \mathbb{R}$, \quad $f(x) = \ln x$
- $f : [1, \infty) \rightarrow \mathbb{R}$, \quad $f(x) = \sqrt{1 - x}$
- $f : \mathbb{Z} \rightarrow \mathbb{Z}$, \quad $f(x) = |x|$
Function Vocabulary

Function

Let $f : A \rightarrow B$ be a function. We call A the **domain** of f, and B the **codomain** of f. The **range** of f is $\{f(a) : a \in A\}$.

$$f : (0, \infty) \rightarrow \mathbb{R}, \quad f(x) = \ln x$$
Codomain: \mathbb{R}, Range: \mathbb{R}

$$f : [1, \infty) \rightarrow \mathbb{R}, \quad f(x) = \sqrt{1 - x}$$

$$f : \mathbb{Z} \rightarrow \mathbb{Z}, \quad f(x) = |x|$$
Let $f : A \rightarrow B$ be a function. We call A the **domain** of f, and B the **codomain** of f. The **range** of f is $\{f(a) : a \in A\}$.

Function Vocabulary

\[
\begin{align*}
 f &: (0, \infty) \rightarrow \mathbb{R}, & f(x) &= \ln x \\
 f &: [1, \infty) \rightarrow \mathbb{R}, & f(x) &= \sqrt{1 - x} \\
 f &: \mathbb{Z} \rightarrow \mathbb{Z}, & f(x) &= |x|
\end{align*}
\]

Codomain: \mathbb{R}, Range: \mathbb{R}

Codomain: \mathbb{R}, Range: $[0, \infty)$
Function Vocabulary

Function

Let $f : A \to B$ be a function. We call A the **domain** of f, and B the **codomain** of f. The **range** of f is $\{f(a) : a \in A\}$.

$$f : (0, \infty) \to \mathbb{R}, \quad f(x) = \ln x \quad \text{Codomain: } \mathbb{R}, \text{Range: } \mathbb{R}$$

$$f : [1, \infty) \to \mathbb{R}, \quad f(x) = \sqrt{1 - x} \quad \text{Codomain: } \mathbb{R}, \text{Range: } [0, \infty)$$

$$f : \mathbb{Z} \to \mathbb{Z}, \quad f(x) = |x| \quad \text{Codomain: } \mathbb{Z}, \text{Range: } \mathbb{N} \cup \{0\}$$
Function Vocabulary

Function

Let \(f : A \rightarrow B \) be a function. We call \(A \) the \textbf{domain} of \(f \), and \(B \) the \textbf{codomain} of \(f \). The \textbf{range} of \(f \) is \(\{ f(a) : a \in A \} \).

- \(f : (0, \infty) \rightarrow \mathbb{R}, \quad f(x) = \ln x \)
 Codomain: \(\mathbb{R} \), Range: \(\mathbb{R} \)

- \(f : [1, \infty) \rightarrow \mathbb{R}, \quad f(x) = \sqrt{1 - x} \)
 Codomain: \(\mathbb{R} \), Range: \([0, \infty) \)

- \(f : \mathbb{Z} \rightarrow \mathbb{Z}, \quad f(x) = |x| \)
 Codomain: \(\mathbb{Z} \), Range: \(\mathbb{N} \cup \{0\} \)

The range is a subset of the codomain.
Functions that aren’t from the reals to the reals
Functions that aren’t from the reals to the reals

\[p : (\text{location}) \rightarrow (\text{color}) \]
Functions that aren’t from the reals to the reals

\[p : \text{(location)} \rightarrow \text{(color)} \]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 6)</td>
<td>(2, 6)</td>
<td>(3, 6)</td>
</tr>
<tr>
<td>(1, 5)</td>
<td>(2, 5)</td>
<td>(3, 5)</td>
</tr>
<tr>
<td>(1, 4)</td>
<td>(2, 4)</td>
<td>(3, 4)</td>
</tr>
<tr>
<td>(1, 3)</td>
<td>(2, 3)</td>
<td>(3, 3)</td>
</tr>
<tr>
<td>(1, 2)</td>
<td>(2, 2)</td>
<td>(3, 2)</td>
</tr>
<tr>
<td>(1, 1)</td>
<td>(2, 1)</td>
<td>(3, 1)</td>
</tr>
</tbody>
</table>
Functions that aren’t from the reals to the reals

\[p : (\text{location}) \rightarrow (\text{color}) \]

\[
\begin{array}{ccc}
(1, 6) & (2, 6) & (3, 6) \\
(1, 5) & (2, 5) & (3, 5) \\
(1, 4) & (2, 4) & (3, 4) \\
(1, 3) & (2, 3) & (3, 3) \\
(1, 2) & (2, 2) & (3, 2) \\
(1, 1) & (2, 1) & (3, 1)
\end{array}
\]

\[p : (\{1, 2, 3\} \times \{1, 2, 3, 4, 5, 6\}) \rightarrow \{ \} \]
Functions that aren’t from the reals to the reals

\[p : \text{(location)} \rightarrow \text{(color)} \]

\[p : (\{1, 2, 3\} \times \{1, 2, 3, 4, 5, 6\}) \rightarrow \{\text{white, mauve, tan, green}\} \]
Functions that aren’t from the reals to the reals

\[p : (\text{location}) \rightarrow (\text{color}) \]

\[
\begin{array}{ccc}
(1, 6) & (2, 6) & (3, 6) \\
(1, 5) & (2, 5) & (3, 5) \\
(1, 4) & (2, 4) & (3, 4) \\
(1, 3) & (2, 3) & (3, 3) \\
(1, 2) & (2, 2) & (3, 2) \\
(1, 1) & (2, 1) & (3, 1) \\
\end{array}
\]

\[p : (\{1, 2, 3\} \times \{1, 2, 3, 4, 5, 6\}) \rightarrow \{\text{white, mauve, tan, green}\} \]

\[p = \{ ((1, 1), \text{white}) , ((1, 2), \text{white}) , ((2, 1), \text{green}) , \ldots \} \]
Functions that aren’t from the reals to the reals

\[p : (\text{location}) \rightarrow (\text{color}) \]

\[
\begin{array}{ccc}
(1, 6) & (2, 6) & (3, 6) \\
(1, 5) & (2, 5) & (3, 5) \\
(1, 4) & (2, 4) & (3, 4) \\
(1, 3) & (2, 3) & (3, 3) \\
(1, 2) & (2, 2) & (3, 2) \\
(1, 1) & (2, 1) & (3, 1) \\
\end{array}
\]

\[p : (\{1, 2, 3\} \times \{1, 2, 3, 4, 5, 6\}) \rightarrow \{\text{white, mauve, tan, green}\} \]

\[p = \{((1, 1), \text{white}), ((1, 2), \text{white}), ((2, 1), \text{green}), \ldots\} \]
Functions that aren’t from the reals to the reals

A function p maps locations to colors. Here is an example:

$$p : \text{(location)} \rightarrow \text{(color)}$$

<table>
<thead>
<tr>
<th>Location</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 6)</td>
<td>(3, 6)</td>
</tr>
<tr>
<td>(1, 5)</td>
<td>(3, 5)</td>
</tr>
<tr>
<td>(1, 4)</td>
<td>(3, 4)</td>
</tr>
<tr>
<td>(1, 3)</td>
<td>(3, 3)</td>
</tr>
<tr>
<td>(1, 2)</td>
<td>(3, 2)</td>
</tr>
<tr>
<td>(1, 1)</td>
<td>(3, 1)</td>
</tr>
</tbody>
</table>

$p : (\{1, 2, 3\} \times \{1, 2, 3, 4, 5, 6\}) \rightarrow \{\text{white, mauve, tan, green}\}$

$p = \{((1, 1), \text{white}), ((1, 2), \text{white}), ((2, 1), \text{green}), \ldots\}$
Functions that aren’t from the reals to the reals

\[p : (\text{location}) \rightarrow (\text{color}) \]

\[
\begin{array}{ccc}
(1, 6) & (2, 6) & (3, 6) \\
(1, 5) & (2, 5) & (3, 5) \\
(1, 4) & (2, 4) & (3, 4) \\
(1, 3) & (2, 3) & (3, 3) \\
(1, 2) & (2, 2) & (3, 2) \\
(1, 1) & (2, 1) & (3, 1) \\
\end{array}
\]

\[p : (\{1, 2, 3\} \times \{1, 2, 3, 4, 5, 6\}) \rightarrow \{\text{white, mauve, tan, green}\} \]

\[p = \{ ((1, 1), \text{white}), ((1, 2), \text{white}), ((2, 1), \text{green}), \ldots \} \]
Equality

Two functions $f : A \to B$ and $g : X \to Y$ are equal if (and only if):

- $A = X$, and
- $f(a) = g(a)$ for every $a \in A$.

Equality in Functions
Equality

Two functions $f : A \rightarrow B$ and $g : X \rightarrow Y$ are **equal** if (and only if):

- $A = X$, and
- $f(a) = g(a)$ for every $a \in A$.

Equal or Not?

- $f : \mathbb{N} \rightarrow \mathbb{N}: f(x) = x^2$
- $g : \mathbb{R} \rightarrow \mathbb{R}: g(x) = x^2$
- $f : \mathbb{Z} \rightarrow \mathbb{Z}: f(x) = x^2$
- $g : \mathbb{Z} \rightarrow \mathbb{R}: g(x) = |x| \ast |x|$
- $f : \{1, 2\} \rightarrow \{1, 2\}: f = \{(1, 1), (2, 1)\}$
- $g : \{1, 2\} \rightarrow \{1, 2\}: g = \{(2, 1), (1, 1)\} $
Equality

Two functions \(f : A \to B \) and \(g : X \to Y \) are equal if (and only if):

- \(A = X \), and
- \(f(a) = g(a) \) for every \(a \in A \).

Equal or Not?

- \(f : \mathbb{N} \to \mathbb{N} : f(x) = x^2 \) \(f \neq g \):
- \(g : \mathbb{R} \to \mathbb{R} : g(x) = x^2 \) \(g(-1) = 1 \), while \(f \) is not defined at \(x = -1 \).
- \(f : \mathbb{Z} \to \mathbb{Z} : f(x) = x^2 \)
- \(g : \mathbb{Z} \to \mathbb{R} : g(x) = |x| \cdot |x| \)

- \(f : \{1, 2\} \to \{1, 2\} : f = \{(1, 1), (2, 1)\} \)
- \(g : \{1, 2\} \to \{1, 2\} : g = \{(2, 1), (1, 1)\} \)
Equality

Two functions \(f : A \to B \) and \(g : X \to Y \) are \textcolor{orange}{\textbf{equal}} if (and only if):

- \(A = X \), and
- \(f(a) = g(a) \) for every \(a \in A \).

Equal or Not?

\begin{itemize}
 \item \(f : \mathbb{N} \to \mathbb{N} : f(x) = x^2 \quad f \neq g: \)
 \item \(g : \mathbb{R} \to \mathbb{R} : g(x) = x^2 \quad g(-1) = 1 \), while \(f \) is not defined at \(x = -1 \).
 \item \(f : \mathbb{Z} \to \mathbb{Z} : f(x) = x^2 \)
 \item \(g : \mathbb{Z} \to \mathbb{R} : g(x) = |x| \times |x| \quad f = g \)
 \item \(f : \{1, 2\} \to \{1, 2\} : f = \{(1, 1), (2, 1)\} \)
 \item \(g : \{1, 2\} \to \{1, 2\} : g = \{(2, 1), (1, 1)\} \)
\end{itemize}
Equality

Two functions $f : A \to B$ and $g : X \to Y$ are **equal** if (and only if):

- $A = X$, and
- $f(a) = g(a)$ for every $a \in A$.

Equal or Not?

- $f : \mathbb{N} \to \mathbb{N}: f(x) = x^2 \quad f \neq g$:

- $g : \mathbb{R} \to \mathbb{R}: g(x) = x^2 \quad g(-1) = 1$, while f is not defined at $x = -1$.

- $f : \mathbb{Z} \to \mathbb{Z}: f(x) = x^2$

- $g : \mathbb{Z} \to \mathbb{R}: g(x) = |x| \ast |x| \quad f = g$

- $f : \{1, 2\} \to \{1, 2\}: f = \{(1, 1), (2, 1)\}$

- $g : \{1, 2\} \to \{1, 2\}: g = \{(2, 1), (1, 1)\} \quad f = g$
Definition

Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.
Injective, Surjective, Bijective

Definition

Let \(f \) be a function from \(A \) to \(B \).

- \(f \) is **injective** (also called *one-to-one*) if, for every \(x, y \in A \), if \(x \neq y \), then \(f(x) \neq f(y) \).

- \(f \) is **surjective** (also called *onto*) if, for every \(b \in B \), there exists an \(a \in A \) such that \(f(a) = b \). (That is: the codomain equals the range.)
Definition

Let f be a function from A to B.

- **Injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- **Surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- **Bijective** if it is both injective and surjective.
Injective, Surjective, Bijective

Definition

Let f be a function from A to B.

- **f is injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- **f is surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- **f is bijective** if it is both injective and surjective.
Injective, Surjective, Bijective

Definition

Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.
Injective, Surjective, Bijective

Definition

Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.

![Diagram showing injective, surjective, and non-injective, non-surjective functions]
Injective, Surjective, Bijective

Definition

Let \(f \) be a function from \(A \) to \(B \).

- \(f \) is **injective** (also called *one-to-one*) if, for every \(x, y \in A \), if \(x \neq y \), then \(f(x) \neq f(y) \).

- \(f \) is **surjective** (also called *onto*) if, for every \(b \in B \), there exists an \(a \in A \) such that \(f(a) = b \). (That is: the codomain equals the range.)

- \(f \) is **bijective** if it is both injective and surjective.

![Diagram](image-url)
Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.
Injective, Surjective, Bijective

Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.

\[f : \mathbb{R} \rightarrow \mathbb{R} \]

\[f(x) = x^2 \]

\[f : \mathbb{R} \rightarrow \mathbb{R} \]

\[f(x) = x^3 \]

neither
Injective, Surjective, Bijective

Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.

\[
\begin{align*}
\text{Let } f &: \mathbb{R} \to [0, \infty) \\
&\quad \text{satisfy } f(x) = x^2 \\
&\quad \text{surjective}
\end{align*}
\]

\[
\begin{align*}
\text{Let } f &: \mathbb{R} \to \mathbb{R} \\
&\quad \text{satisfy } f(x) = x^3
\end{align*}
\]
Let \(f \) be a function from \(A \) to \(B \).

- \(f \) is **injective** (also called *one-to-one*) if, for every \(x, y \in A \), if \(x \neq y \), then \(f(x) \neq f(y) \).

- \(f \) is **surjective** (also called *onto*) if, for every \(b \in B \), there exists an \(a \in A \) such that \(f(a) = b \). (That is: the codomain equals the range.)

- \(f \) is **bijective** if it is both injective and surjective.
Injective, Surjective, Bijective

Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.

\[
\begin{align*}
\text{Injective:} & & \text{Surjective:} \\
& f(x) &= x \sin x & f(x) &= \arctan x
\end{align*}
\]
Injective, Surjective, Bijective

Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.

\[
\begin{align*}
\text{surjective} \\
\text{not injective}
\end{align*}
\]
Injective, Surjective, Bijective

Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.

\[f : \mathbb{R} \to \mathbb{R} \]

\[f(x) = x \sin x \]

\[f : \mathbb{R} \to \mathbb{R} \]

\[f(x) = \arctan x \]
Injective, Surjective, Bijective

Let f be a function from A to B.

- f is **injective** (also called *one-to-one*) if, for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

- f is **surjective** (also called *onto*) if, for every $b \in B$, there exists an $a \in A$ such that $f(a) = b$. (That is: the codomain equals the range.)

- f is **bijective** if it is both injective and surjective.

\[f : \mathbb{R} \rightarrow \mathbb{R} \]
\[f(x) = x \sin x \]

\[f : \mathbb{R} \rightarrow (-\frac{\pi}{2}, \frac{\pi}{2}) \]
\[f(x) = \arctan x \]

surjective

not injective

injective

surjective
Prove or disprove:
The function \(f(x) = 3x^4 + 1, \, f : \mathbb{R} \to \mathbb{R}, \) is injective.

Prove or disprove:
The function \(f(x) = 3x^4 + 1, \, f : \mathbb{R} \to \mathbb{R}, \) is surjective.
Prove or disprove:
The function \(f(x) = 3x^4 + 1, \ f : \mathbb{R} \to \mathbb{R} \), is injective.

We notice 1 and \(-1\) are in \(\mathbb{R}\), \(1 \neq -1\), and \(f(1) = f(-1) = 4\).
This shows that \(f\) is not injective.

Prove or disprove:
The function \(f(x) = 3x^4 + 1, \ f : \mathbb{R} \to \mathbb{R} \), is surjective.
Prove or disprove: The function \(f(x) = 3x^4 + 1, \ f : \mathbb{R} \to \mathbb{R} \), is injective.

We notice 1 and \(-1\) are in \(\mathbb{R}\), \(1 \neq -1\), and \(f(1) = f(-1) = 4\). This shows that \(f\) is not injective.

Prove or disprove: The function \(f(x) = 3x^4 + 1, \ f : \mathbb{R} \to \mathbb{R} \), is surjective.

We notice 0 is in \(\mathbb{R}\), but no real value of \(x\) gives \(f(x) = 0\). This shows that \(f\) is not surjective.
Prove that the function

\[f(x) = \frac{x + 1}{x - 1}, \quad f : (\mathbb{R} - \{1\}) \to (\mathbb{R} - \{1\}) \]

is bijective.
Prove that the function

\[f(x) = \frac{x + 1}{x - 1}, \quad f : (\mathbb{R} - \{1\}) \to (\mathbb{R} - \{1\}) \]

is bijective.
Proving Injectivity and Surjectivity

Prove that the function
\[f(x) = \frac{x + 1}{x - 1}, \quad f : (\mathbb{R} - \{1\}) \to (\mathbb{R} - \{1\}) \]
is bijective.

Injectivity Suppose \(f(x) = f(y) \) for some \(x, y \in \mathbb{R} - \{1\} \).

So, \(x = y \). We conclude \(f(x) \) is injective.

Surjectivity
Proving Injectivity and Surjectivity

Prove that the function

\[f(x) = \frac{x + 1}{x - 1}, \quad f : (\mathbb{R} - \{1\}) \rightarrow (\mathbb{R} - \{1\}) \]

is bijective.

Injectivity

Suppose \(f(x) = f(y) \) for some \(x, y \in \mathbb{R} - \{1\} \).

That is:

\[\frac{x + 1}{x - 1} = \frac{y + 1}{y - 1} \]

So:

\[(x + 1)(y - 1) = (x - 1)(y + 1) \]

So:

\[xy - x + y - 1 = xy + x - y - 1 \]

So:

\[-x + y = x - y \]

So:

\[2y = 2x \]

So, \(x = y \). We conclude \(f(x) \) is injective.

Surjectivity
Proving Injectivity and Surjectivity

Prove that the function

\[f(x) = \frac{x + 1}{x - 1}, \quad f : (\mathbb{R} - \{1\}) \rightarrow (\mathbb{R} - \{1\}) \]

is bijective.

Injectivity

Surjectivity Let \(y \in \mathbb{R} - \{1\} \), and define \(a = \)

Then \(a \in \mathbb{R} - \{1\} \), and \(f(a) = y \). We conclude \(f(x) \) is surjective.
Proving Injectivity and Surjectivity

Prove that the function

\[f(x) = \frac{x + 1}{x - 1}, \quad f : (\mathbb{R} - \{1\}) \to (\mathbb{R} - \{1\}) \]

is bijective.

Injectivity

Let \(y \in \mathbb{R} - \{1\} \), and define \(a = \frac{y + 1}{y - 1} \).

Then \(a \in \mathbb{R} - \{1\} \), and \(f(a) = y \). We conclude \(f(x) \) is surjective.
Proving Injectivity and Surjectivity

Prove that the function

\[f(x) = \frac{x + 1}{x - 1}, \quad f : (\mathbb{R} - \{1\}) \rightarrow (\mathbb{R} - \{1\}) \]

is bijective.

Injectivity

Let \(y \in \mathbb{R} - \{1\} \), and define \(a = \frac{y + 1}{y - 1} \).

We note that, since \(y \neq 1 \), \(a \in \mathbb{R} \). Furthermore, since the equation \(\frac{y + 1}{y - 1} = 1 \)

is equivalent to the equation \(y + 1 = y - 1 \), and so \(1 = -1 \), which has no solutions, we see that \(a \neq 1 \). We note further:

\[
\begin{align*}
f(a) &= \frac{a + 1}{a - 1} = \frac{\frac{y + 1}{y - 1} + 1}{\frac{y + 1}{y - 1} - 1} = \frac{\frac{y + 1 + y - 1}{y - 1}}{\frac{y + 1 - (y - 1)}{y - 1}} = \frac{y + 1 + y - 1}{y + 1 - (y - 1)} = \frac{2y}{2} = y
\end{align*}
\]

Then \(a \in \mathbb{R} - \{1\} \), and \(f(a) = y \). We conclude \(f(x) \) is surjective.
Consider the function \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) defined by

\[
f(x, y) = (x + y, x - y)
\]

Is \(f \) injective? Is \(f \) surjective? Prove your answers.
Consider the function \(f : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) defined by
\[
f(x, y) = (x + y, x - y)
\]

Is \(f \) injective? Is \(f \) surjective? Prove your answers.

\(f \) is injective. Suppose there exist \((x, y) \in \mathbb{R}^2\) and \((a, b) \in \mathbb{R}^2\) such that \(f(x, y) = f(a, b) \).

So, \((x, y) = (a, b)\).
Consider the function \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) defined by
\[
f(x, y) = (x + y, x - y)
\]

Is \(f \) injective? Is \(f \) surjective? Prove your answers.

\(f \) is injective. Suppose there exist \((x, y) \in \mathbb{R}^2\) and \((a, b) \in \mathbb{R}^2\) such that \(f(x, y) = f(a, b)\). Then: (1) \(x + y = a + b \), and (2) \(x - y = a - b \). Adding (1) and (2), we see \(2x = 2a \), so \(x = a \). Then from (1) we see \(y = b \). So, \((x, y) = (a, b)\).
Consider the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by

$$f(x, y) = (x + y, x - y)$$

f is injective. Suppose there exist $(x, y) \in \mathbb{R}^2$ and $(a, b) \in \mathbb{R}^2$ such that $f(x, y) = f(a, b)$. Then: (1) $x + y = a + b$, and (2) $x - y = a - b$. Adding (1) and (2), we see $2x = 2a$, so $x = a$. Then from (1) we see $y = b$. So, $(x, y) = (a, b)$.

f is also surjective.
Consider the function \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) defined by
\[
f(x, y) = (x + y, x - y)
\]

Is \(f \) injective? Is \(f \) surjective? Prove your answers.

\(f \) is injective. Suppose there exist \((x, y) \in \mathbb{R}^2\) and \((a, b) \in \mathbb{R}^2\) such that \(f(x, y) = f(a, b)\). Then: (1) \(x + y = a + b\), and (2) \(x - y = a - b\). Adding (1) and (2), we see \(2x = 2a\), so \(x = a\). Then from (1) we see \(y = b\). So, \((x, y) = (a, b)\).

\(f \) is also surjective. Given any \((a, b) \in \mathbb{R}^2\), \((\frac{a+b}{2}, \frac{a-b}{2}) \in \mathbb{R}^2\), and \(f\left(\frac{a+b}{2}, \frac{a-b}{2}\right) = (a, b)\).
Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f(x, y) = (x - y, x^2 - y^2)$$

Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by
\[
f(x, y) = (x - y, x^2 - y^2)
\]

f is not injective, because

f is not surjective.
Consider the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by

$$f(x, y) = (x - y, x^2 - y^2)$$

f is not injective, because $f(0, 0) = f(1, 1) = (0, 0)$.

f is not surjective.
Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$f(x, y) = (x - y, x^2 - y^2)$$

f is not injective, because $f(0, 0) = f(1, 1) = (0, 0)$.

f is not surjective. We note $(0, 1) \in \mathbb{R}^2$. If $f(x, y) = (0, 1)$, then $x - y = 0$, so $x = y$. But then $x^2 - y^2 = 0$, so $f(x, y) = (0, 0) \neq (0, 1)$.
Consider a function $f : A \to B$, where $|A| = 3$ and $|B| = 2$.

Is f injective? Is f surjective?
Consider a function $f : A \rightarrow B$, where $|A| = 3$ and $|B| = 2$.

Is f injective? Is f surjective?

f is not injective, because there are three different inputs and only two different outputs.

f may or may not be surjective.
Consider a function $f : A \rightarrow B$, where $|A| = 3$ and $|B| = 2$.

Is f injective? Is f surjective?

f is not injective, because there are three different inputs and only two different outputs.

f may or may not be surjective.

Pigeonhole Principle

Suppose p pigeons are sitting in h pigeonholes.

- If $p > h$, then some hole has more than one pigeon in it.
- If $p < h$, then some hole does not have a pigeon in it.
Proving Injectivity and Surjectivity

Consider a function $f : A \rightarrow B$, where $|A| = 3$ and $|B| = 2$.

Is f injective? Is f surjective?

f is not injective, because there are three different inputs and only two different outputs.

f may or may not be surjective.

Pigeonhole Principle

Suppose p pigeons are sitting in h pigeonholes.

- If $p > h$, then some hole has more than one pigeon in it.
- If $p < h$, then some hole does not have a pigeon in it.

Let A and B be finite sets, and let $f : A \rightarrow B$ be a function.

- If $|A| > |B|$, then f is not
- If $|A| < |B|$, then f is not
Proving Injectivity and Surjectivity

Consider a function $f : A \rightarrow B$, where $|A| = 3$ and $|B| = 2$.

Is f injective? Is f surjective?

f is not injective, because there are three different inputs and only two different outputs.

f may or may not be surjective.

Pigeonhole Principle

Suppose p pigeons are sitting in h pigeonholes.

- If $p > h$, then some hole has more than one pigeon in it.
- If $p < h$, then some hole does not have a pigeon in it.

Let A and B be finite sets, and let $f : A \rightarrow B$ be a function.

- If $|A| > |B|$, then f is not injective.
- If $|A| < |B|$, then f is not
Consider a function $f : A \rightarrow B$, where $|A| = 3$ and $|B| = 2$.

Is f injective? Is f surjective?

f is not injective, because there are three different inputs and only two different outputs.

f may or may not be surjective.

Pigeonhole Principle

Suppose p pigeons are sitting in h pigeonholes.

- If $p > h$, then some hole has more than one pigeon in it.
- If $p < h$, then some hole does not have a pigeon in it.

Let A and B be finite sets, and let $f : A \rightarrow B$ be a function.

- If $|A| > |B|$, then f is not injective.
- If $|A| < |B|$, then f is not surjective.
Socks and Pigeons

Suppose you have a drawer full of red, blue, and green socks. You’re grabbing clothes in the dark. How many socks do you have to take before you’re guaranteed to have a matching pair?

You roll a handful of dice all at once. You are guaranteed to have three dice showing the same number. How many dice did you roll?
The average person has about 100,000 hair follicles on their head\(^1\)
The average person has about 100,000 hair follicles on their head\(^1\)

Suppose everyone in Canada has between 0 and 999,999 hairs on their head. The population of Canada is more than 30 million. What does the Pigeonhole Principle tell us about this situation?

\(^{1}\)http://www.newworldencyclopedia.org/entry/Hair
Pigeonhole Principle

The average person has about 100,000 hair follicles on their head\(^1\)

Suppose everyone in Canada has between 0 and 999,999 hairs on their head. The population of Canada is more than 30 million. What does the Pigeonhole Principle tell us about this situation?

There are at least two people in Canada with exactly the same number of hairs on their head.

\(^1\)http://www.newworldencyclopedia.org/entry/Hair
The average person has about 100,000 hair follicles on their head\(^1\)

Suppose everyone in Canada has between 0 and 999,999 hairs on their head. The population of Canada is more than 30 million. What does the Pigeonhole Principle tell us about this situation?

There are at least two people in Canada with exactly the same number of hairs on their head.

(Actually, there are at least 30 people in Canada with exactly the same number of hairs on their head.)

\(^1\)http://www.newworldencyclopedia.org/entry/Hair
The average person has about 100,000 hair follicles on their head\(^1\)

Suppose everyone in Canada has between 0 and 999,999 hairs on their head. The population of Canada is more than 30 million. What does the Pigeonhole Principle tell us about this situation?

There are at least two people in Canada with exactly the same number of hairs on their head.

(Actually, there are at least 30 people in Canada with exactly the same number of hairs on their head.)

This is a non-constructive proof.

\(^1\)http://www.newworldencyclopedia.org/entry/Hair
Pigeonhole Principle

Pick six distinct numbers from the set \(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \).
Pigeonhole Principle

Pick six distinct numbers from the set \(\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}\).
Among your picks, there are two numbers that sum to 11.
Pigeonhole Principle

Pick six distinct numbers from the set \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.

Among your picks, there are two numbers that sum to 11.

Make the following holes:

\[\{1, 10\}, \quad \{2, 9\}, \quad \{3, 8\}, \quad \{4, 7\}, \quad \{5, 6\}\]
Pigeonhole Principle

Pick six distinct numbers from the set \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.

Among your picks, there are two numbers that sum to 11.

Make the following holes:

\{1, 10\}, \{2, 9\}, \{3, 8\}, \{4, 7\}, \{5, 6\}

Notice every number from the original set of ten appears in one of the holes. By picking six numbers, each of which fits into one of the 5 holes, you must have chosen at least two numbers from the same hole. Their sum is 11.
Pigeonhole Principle

Pick six distinct numbers from the set \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.

Among your picks, there are two numbers that sum to 11.

Make the following holes:

\{1, 10\}, \{2, 9\}, \{3, 8\}, \{4, 7\}, \{5, 6\}

Notice every number from the original set of ten appears in one of the holes. By picking six numbers, each of which fits into one of the 5 holes, you must have chosen at least two numbers from the same hole. Their sum is 11.

Suppose you have a pack of cards with the face cards removed. That is, you have 40 cards: four of each suit (♦, ♥, ♣, ♠), with face values 1-10. What is the minimum number of cards you can draw, and still be guaranteed that there are two cards of the same suit that add to 11?
Proposition: For any $a \in \mathbb{N}$, there exist distinct $k, \ell \in \mathbb{N}$ such that $a^k - a^\ell$ is divisible by 7.
Proposition: For any \(a \in \mathbb{N} \), there exist distinct \(k, \ell \in \mathbb{N} \) such that \(a^k - a^\ell \) is divisible by 7.

Example: if \(a = 2 \), then \(2^4 - 2^1 = 16 - 2 = 14 = 2 \times 7 \).
Proposition: For any \(a \in \mathbb{N} \), there exist distinct \(k, \ell \in \mathbb{N} \) such that \(a^k - a^\ell \) is divisible by 7.

Example: if \(a = 2 \), then \(2^4 - 2^1 = 16 - 2 = 14 = 2 \times 7 \).

Example: if \(a = 3 \), then \(3^7 - 3^1 = 2187 - 3 = 2184 = 312 \times 7 \).
Pigeonhole Principle

Proposition: For any \(a \in \mathbb{N} \), there exist distinct \(k, \ell \in \mathbb{N} \) such that \(a^k - a^\ell \) is divisible by 7.

Example: if \(a = 2 \), then \(2^4 - 2^1 = 16 - 2 = 14 = 2 \times 7 \).

Example: if \(a = 3 \), then \(3^7 - 3^1 = 2187 - 3 = 2184 = 312 \times 7 \)

Proof: There are seven congruence classes mod 7. For every \(x \in \mathbb{N} \), \(a^x \) is in one of them. Since there are more than seven values of \(a^x \) when we let \(x \in \mathbb{N} \), two of them must be in the same congruence class mod 7. Then their difference is divisible by 7.

Actually: there must exist \(k, \ell \) in \(\{1, \ldots, 8\} \) such that \(a^k - a^\ell \) is divisible by 7.
Pigeonhole Principle

Proposition: In any set of four distinct natural numbers, there exist two distinct natural numbers whose sum or difference is divisible by 5.
Proposition: In any set of four distinct natural numbers, there exist two distinct natural numbers whose sum or difference is divisible by 5.

Example: In the set $\{1, 2, 3, 5\}$, $2 + 3$ is divisible by 5.
Proposition: In any set of four distinct natural numbers, there exist two distinct natural numbers whose sum or difference is divisible by 5.

Example: In the set \{1, 2, 3, 5\}, 2 + 3 is divisible by 5.
Example: In the set \{1, 6, 8, 10\}, 6 − 1 is divisible by 5.
Pigeonhole Principle

Proposition: In any set of four distinct natural numbers, there exist two distinct natural numbers whose sum or difference is divisible by 5.

Example: In the set \{1, 2, 3, 5\}, \(2 + 3\) is divisible by 5.

Example: In the set \{1, 6, 8, 10\}, \(6 - 1\) is divisible by 5.

Proof We will use the pigeonhole principle. Let the natural numbers be partitioned into three “holes” by their equivalence class mod 5, as follows:

\[[0], \quad [1] \cup [4], \quad [2] \cup [3] \]

By the pigeonhole principle, if we pick four natural numbers, two of them must be in the same hole. If they are in the same equivalence class mod 5, then their difference is divisible by 5. If they are in different equivalence classes (but the same hole), then their sum is divisible by 5.
Function Composition

Let f and g be functions, $f : B \rightarrow C$ and $g : A \rightarrow B$. Then we defined the **composition** of f and g to be

$$(f \circ g)(x) = f(g(x))$$
Function Composition

Let f and g be functions, $f : B \to C$ and $g : A \to B$. Then we defined the **composition** of f and g to be

$$(f \circ g)(x) = f(g(x))$$

Suppose f and g are functions from the reals to the reals, $f(x) = x^2 + 5x$, $g(x) = \sin x$. Then:

$$f \circ g(x) =$$
Let \(f \) and \(g \) be functions, \(f : B \to C \) and \(g : A \to B \). Then we defined the composition of \(f \) and \(g \) to be

\[
(f \circ g)(x) = f(g(x))
\]

Suppose \(f \) and \(g \) are functions from the reals to the reals, \(f(x) = x^2 + 5x \), \(g(x) = \sin x \). Then:

\[
f \circ g(x) = (\sin x)^2 + 5 \sin x
\]
Function Composition

Let f and g be functions, $f : B \rightarrow C$ and $g : A \rightarrow B$. Then we defined the **composition** of f and g to be

$$(f \circ g)(x) = f(g(x))$$

Suppose f and g are functions from the reals to the reals, $f(x) = x^2 + 5x$, $g(x) = \sin x$. Then:

$$f \circ g(x) = (\sin x)^2 + 5 \sin x$$

Suppose $f : \mathbb{R}^2 \rightarrow \mathbb{R}^3$, $g : \mathbb{R} \rightarrow \mathbb{R}^2$, with

$f(x, y) = (x^2, x + y, y^2)$, and $g(x) = (3x, 4x)$.

$f \circ g$
Let f and g be functions, $f : B \to C$ and $g : A \to B$. Then we defined the **composition** of f and g to be

$$(f \circ g)(x) = f(g(x))$$

Suppose f and g are functions from the reals to the reals, $f(x) = x^2 + 5x$, $g(x) = \sin x$. Then:

$$f \circ g(x) = (\sin x)^2 + 5 \sin x$$

Suppose $f : \mathbb{R}^2 \to \mathbb{R}^3$, $g : \mathbb{R} \to \mathbb{R}^2$, with $f(x, y) = (x^2, x + y, y^2)$, and $g(x) = (3x, 4x)$.

$$f \circ g(x)$$
Function Composition

Let f and g be functions, $f : B \to C$ and $g : A \to B$. Then we defined the composition of f and g to be

$$(f \circ g)(x) = f(g(x))$$

Suppose f and g are functions from the reals to the reals, $f(x) = x^2 + 5x$, $g(x) = \sin x$. Then:

$$f \circ g(x) = (\sin x)^2 + 5\sin x$$

Suppose $f : \mathbb{R}^2 \to \mathbb{R}^3$, $g : \mathbb{R} \to \mathbb{R}^2$, with $f(x, y) = (x^2, x + y, y^2)$, and $g(x) = (3x, 4x)$. Then:

$$f \circ g(x) = f(3x, 4x) = (9x^2, 7x, 16x^2)$$
Composition and Injectivity, Surjectivity

For the following characteristics, give an example of functions f and g that have them, or show that none exists.

Assume that the range of g is the same as the domain of f.

- f injective, $f \circ g$ not injective.

- f injective, g injective, $f \circ g$ not injective.

- g surjective, $f \circ g$ not surjective.

- f surjective, g surjective, $f \circ g$ not surjective.
Composition and Injectivity, Surjectivity

For the following characteristics, give an example of functions f and g that have them, or show that none exists. Assume that the range of g is the same as the domain of f.

- f injective, $f \circ g$ not injective.

 $f(x) = x$, $g(x) = x^2$

- f injective, g injective, $f \circ g$ not injective.

- g surjective, $f \circ g$ not surjective.

- f surjective, g surjective, $f \circ g$ not surjective.
Composition and Injectivity, Surjectivity

For the following characteristics, give an example of functions f and g that have them, or show that none exists.

Assume that the range of g is the same as the domain of f.

- f injective, $f \circ g$ not injective.

 $f(x) = x$, $g(x) = x^2$

- f injective, g injective, $f \circ g$ not injective.

- g surjective, $f \circ g$ not surjective.

 $f(x) = \sin x$, $g(x) = x$

- f surjective, g surjective, $f \circ g$ not surjective.
Composition and Injectivity, Surjectivity

For the following characteristics, give an example of functions f and g that have them, or show that none exists.

Assume that the range of g is the same as the domain of f.

- f injective, $f \circ g$ not injective.

 $f(x) = x$, $g(x) = x^2$

- f injective, g injective, $f \circ g$ not injective.

 Suppose f and g are both injective. Then if $f(g(x)) = f(g(y))$, by injectivity of f, $g(x) = g(y)$. Then, by injectivity of g, $g(x) = g(y)$ implies $x = y$. So $f \circ g$ is injective.

- g surjective, $f \circ g$ not surjective.

 $f(x) = \sin x$, $g(x) = x$

- f surjective, g surjective, $f \circ g$ not surjective.
Composition and Injectivity, Surjectivity

For the following characteristics, give an example of functions \(f \) and \(g \) that have them, or show that none exists.

Assume that the range of \(g \) is the same as the domain of \(f \).

- \(f \) injective, \(f \circ g \) not injective.
 \[
 f(x) = x, \quad g(x) = x^2
 \]

- \(f \) injective, \(g \) injective, \(f \circ g \) not injective.
 Suppose \(f \) and \(g \) are both injective. Then if \(f(g(x)) = f(g(y)) \), by injectivity of \(f \), \(g(x) = g(y) \). Then, by injectivity of \(g \), \(g(x) = g(y) \) implies \(x = y \). So \(f \circ g \) is injective.

- \(g \) surjective, \(f \circ g \) not surjective.
 \[
 f(x) = \sin x, \quad g(x) = x
 \]

- \(f \) surjective, \(g \) surjective, \(f \circ g \) not surjective.
 Suppose \(f \) and \(g \) are surjective, with \(g : A \to B, \ f : B \to C \). Then \(f \circ g : A \to C \). For any \(c \in C \), by surjectivity of \(f \), there exists \(b \in B \) such that \(f(b) = c \). By surjectivity of \(g \), there exists \(a \in A \) such that \(g(a) = b \). Then \(f \circ g(a) = f(g(a)) = f(b) = c \). So, \(f \circ g \) is surjective.
Inverse Relations

An inverse function “undoes” the original function. Example: \(\sqrt[3]{x^3} = x \), so \(f(x) = \sqrt[3]{x} \) is the inverse of \(g(x) = x^3 \).
Inverse Relations

An inverse function “undoes” the original function. Example: $\sqrt[3]{x^3} = x$, so $f(x) = \sqrt[3]{x}$ is the inverse of $g(x) = x^3$.

Inverse Relation

Given a relation A from A to B, the **inverse relation** from B to A is defined as

$$R^{-1} = \{(y, x) : (x, y) \in R\}$$
Inverse Relations

12 Functions
12.1 Functions
12.2 Injective and Surjective Functions
12.3 The Pigeonhole Principle
12.4 Composition
12.5 Inverse Functions
12.6 Image and Preimage

Relation: "is the absolute value of"

\[R = \{ (2, 2), (-2, 2), (1, 1), (-1, 1) \} \]

Function:
\[f(x) = |x| \]

\[f: \{ 1, 2, -1, -2 \} \to \{ 1, 2 \} \]

Theorem 12.3
Let \(f: A \to B \) be a function. Then \(f \) is bijective if and only if the inverse relation \(f^{-1} \) is a function from \(B \) to \(A \).

If \(f \) is not injective, then \(f^{-1} \) is not a function.

If \(f(x) \) is not surjective, then the domain of \(f^{-1} \) is not \(B \).
12 Functions
12.1 Functions
12.2 Injective and Surjective Functions
12.3 The Pigeonhole Principle
12.4 Composition
12.5 Inverse Functions
12.6 Image and Preimage

Theorem 12.3

Let $f: A \rightarrow B$ be a function. Then f is bijective if and only if the inverse relation f^{-1} is a function from B to A.

If f is not injective, then f^{-1} is not a function.

If $f(x)$ is not surjective, then the domain of f^{-1} is not B.

In the diagram, the function $f: \{-2, -1, 1, 2\} \rightarrow \{1, 2\}$ is shown, where $f(x) = |x|$. The inverse relation f^{-1} is also represented in the diagram.
Relation: “is the absolute value of”

\[R = \{(2, 2), (-2, 2), (1, 1), (-1, 1)\} \]
Functions

12.1 Functions
12.2 Injective and Surjective Functions
12.3 The Pigeonhole Principle
12.4 Composition
12.5 Inverse Functions
12.6 Image and Preimage

Inverse Relations

Relation: “is the absolute value of”

\[R = \{(2, 2), (-2, 2), (1, 1), (-1, 1)\} \]

Function: \(f(x) = |x| \)

\[f : \{1, 2, -1, -2\} \to \{1, 2\} \]
Inverse Relations

Relation: “is the absolute value of”

\[R = \{(2, 2), (-2, 2), (1, 1), (-1, 1)\} \]

Function: \(f(x) = |x| \)

\(f : \{1, 2, -1, -2\} \rightarrow \{1, 2\} \)
Inverse Relations

Relation: “is the absolute value of”

\[R = \{ (2, 2), (-2, 2), (1, 1), (-1, 1) \} \]

Function: \(f(x) = |x| \)

\[f : \{1, 2, -1, -2\} \rightarrow \{1, 2\} \]
Relation: "is the absolute value of"

Relation: $R = \{(2, 2), (-2, 2), (1, 1), (-1, 1)\}$

Function: $f(x) = |x|$

$f : \{1, 2, -1, 1, -2\} \rightarrow \{1, 2\}$

Inverse relation

$R = \{(2, 2), (2, -2), (1, 1), (1, -1)\}$
Inverse Relations

Relation: “is the absolute value of”
\[R = \{(2, 2), (-2, 2), (1, 1), (-1, 1)\} \]
Function: \(f(x) = |x| \)
\[f : \{1, 2, -1, -2\} \to \{1, 2\} \]

Inverse relation
\[R = \{(2, 2), (2, -2), (1, 1), (1, -1)\} \]
Not a function
Inverse Relations

Relation: “is the absolute value of”

\[R = \{(2, 2), (-2, 2), (1, 1), (-1, 1)\} \]

Function: \(f(x) = |x| \)

\[f : \{1, 2, -1, -2\} \to \{1, 2\} \]

Inverse relation

\[R = \{(2, 2), (2, -2), (1, 1), (1, -1)\} \]

Not a function

Theorem 12.3 Let \(f : A \to B \) be a function. Then \(f \) is bijective if and only if the inverse relation \(f^{-1} \) is a function from \(B \) to \(A \).
Inverse Relations

Relation: “is the absolute value of”
\[R = \{(2,2), (-2,2), (1,1), (-1,1)\} \]
Function: \(f(x) = |x| \)
\[f: \{1, 2, -1, -2\} \rightarrow \{1, 2\} \]

Inverse relation
\[R = \{(2,2), (2,-2), (1,1), (1,-1)\} \]

Not a function

Theorem 12.3 Let \(f : A \rightarrow B \) be a function. Then \(f \) is bijective if and only if the inverse relation \(f^{-1} \) is a function from \(B \) to \(A \).

If \(f \) is not injective, then \(f^{-1} \) is not a function.
Inverse Relations

Relation: “is the absolute value of”
\[R = \{(2, 2), (-2, 2), (1, 1), (-1, 1)\} \]

Function: \(f(x) = |x| \)
\[f : \{1, 2, -1, -2\} \rightarrow \{1, 2\} \]

Inverse relation
\[R = \{(2, 2), (2, -2), (1, 1), (1, -1)\} \]
Not a function

Theorem 12.3 Let \(f : A \rightarrow B \) be a function. Then \(f \) is bijective if and only if the inverse relation \(f^{-1} \) is a function from \(B \) to \(A \).

If \(f \) is not injective, then \(f^{-1} \) is not a function.

If \(f(x) \) is not surjective, then the domain of \(f^{-1} \) is not \(B \).
Identity Function

Given a set A, the **identity function** on A is the function that maps every element to itself. That is, $i_A(x) = x$ for every $x \in A$.

Inverse Function

Let $f : A \rightarrow B$ be a bijective function. Note then f is also a relation. Then the inverse relation $f^{-1} : B \rightarrow A$ is the **inverse function** to f.
Inverse Functions

Identity Function

Given a set A, the **identity function** on A is the function that maps every element to itself. That is, $i_A(x) = x$ for every $x \in A$.

Inverse Function

Let $f : A \rightarrow B$ be a bijective function. Note then f is also a relation. Then the inverse relation $f^{-1} : B \rightarrow A$ is the **inverse function** to f.

Under this definition, functions f and f^{-1} have the properties that

$$f^{-1} \circ f = i_A \text{ and } f \circ f^{-1} = i_B$$

That is, $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.
Inverse Functions

\[f : (\mathbb{R} - \{2\}) \rightarrow (\mathbb{R} - \{3\}), \quad f(x) = \frac{3x + 1}{x - 2}. \]

Find \(f^{-1}(x) \).
Inverse Functions

\[f : (\mathbb{R} - \{2\}) \rightarrow (\mathbb{R} - \{3\}), \quad f(x) = \frac{3x + 1}{x - 2}. \]

Find \(f^{-1}(x) \).

We want to swap the role of input and output, so we swap \(x \) and \(y \), and we solve for \(y \).
Inverse Functions

\[f : (\mathbb{R} - \{2\}) \rightarrow (\mathbb{R} - \{3\}), \quad f(x) = \frac{3x + 1}{x - 2}. \]

Find \(f^{-1}(x) \).

We want to swap the role of input and output, so we swap \(x \) and \(y \), and we solve for \(y \).

\[
\begin{align*}
y &= \frac{3x + 1}{x - 2} \\
x &= \frac{3y + 1}{y - 2} \\
yx - 2x &= 3y + 1 \\
yx - 3y &= 2x + 1 \\
y(x - 3) &= 2x + 1 \\
y &= \frac{2x + 1}{x - 3}
\end{align*}
\]

\[f^{-1}(x) = \frac{2x + 1}{x - 3} \]
Inverse Functions

\[f : \mathbb{R}^2 \to \mathbb{R}^2, \quad f(x, y) = (y(x^2 + 1), x^3) \] is bijective. Find \(f^{-1}(x) \).
Inverse Functions

\[f : \mathbb{R}^2 \to \mathbb{R}^2, \quad f(x, y) = (y(x^2 + 1), x^3) \] is bijective. Find \(f^{-1}(x) \).

We want to swap the role of input and output:

\[
\begin{align*}
 f^{-1}(x, y) &= (A, B) \\
 f(A, B) &= (x, y) \\
 (B(A^2 + 1), A^3) &= (x, y)
\end{align*}
\]

What are \(A, B \) in terms of \(x, y \)?
Inverse Functions

\[f : \mathbb{R}^2 \to \mathbb{R}^2, \ f(x, y) = (y(x^2 + 1), x^3) \text{ is bijective.} \]

Find \(f^{-1}(x) \).

We want to swap the role of input and output:

\[f^{-1}(x, y) = (A, B) \quad \text{What are } A, B \text{ in terms of } x, y? \]

\[f(A, B) = (x, y) \]

\[(B(A^2 + 1), A^3) = (x, y) \]

\[
\begin{aligned}
 x &= B(A^2 + 1) \\
 y &= A^3 \\
 A &= y^{1/3} \\
 B &= \frac{x}{A^2 + 1} = \frac{x}{y^{2/3} + 1}
\end{aligned}
\]

\[f^{-1}(x, y) = \left(y^{1/3}, \frac{x}{y^{2/3} + 1} \right) \]
Suppose $f : A \rightarrow B$ is a function, $X \subseteq A$, $Y \subseteq B$.

- We write $f(X) = \{f(x) : x \in X\}$ for the **image** of X under f.
- We write $f^{-1}(Y) = \{x \in A : f(x) \in Y\}$ for the **preimage** of Y under f.

Example:

- $f(3) = 9$
- $f(\{3, -3\}) = \{9\}$
- $f([-4, 4]) = [0, 16]$
- $f^{-1}([0, 4]) = [-2, 2]$
- $f^{-1}([-4, 4]) = [-2, 2]$
- $f^{-1}(\{-2\}) = \emptyset$
Suppose \(f : A \to B \) is a function, \(X \subseteq A, \ Y \subseteq B \).

- We write \(f(X) = \{ f(x) : x \in X \} \) for the \textbf{image} of \(X \) under \(f \).
- We write \(f^{-1}(Y) = \{ x \in A : f(x) \in Y \} \) for the \textbf{preimage} of \(Y \) under \(f \).

Example: \(f : \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 \).

- \(f(3) = \)
- \(f(\{3, -3\}) = \)
- \(f([-4, 4]) = \)
- \(f^{-1}([0, 4]) = \)
- \(f^{-1}([-4, 4]) = \)
- \(f^{-1}(\{-2\}) = \)
Image, Preimage

Suppose \(f : A \to B \) is a function, \(X \subseteq A \), \(Y \subseteq B \).

- We write \(f(X) = \{f(x) : x \in X\} \) for the **image** of \(X \) under \(f \).
- We write \(f^{-1}(Y) = \{x \in A : f(x) \in Y\} \) for the **preimage** of \(Y \) under \(f \).

Example: \(f : \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 \).

- \(f(3) = 9 \)
- \(f(\{3, -3\}) = \)
- \(f([-4, 4]) = \)
- \(f^{-1}([0, 4]) = \)
- \(f^{-1}([-4, 4]) = \)
- \(f^{-1}(\{-2\}) = \)
Image, Preimage

Suppose $f : A \rightarrow B$ is a function, $X \subseteq A$, $Y \subseteq B$.

- We write $f(X) = \{f(x) : x \in X\}$ for the **image** of X under f.
- We write $f^{-1}(Y) = \{x \in A : f(x) \in Y\}$ for the **preimage** of Y under f.

Example: $f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^2$.

- $f(3) = 9$
- $f(\{3, -3\}) = \{9\}$
- $f([-4, 4]) = \quad$
- $f^{-1}([0, 4]) = \quad$
- $f^{-1}([-4, 4]) = \quad$
- $f^{-1}(\{-2\}) = \quad$
Suppose $f : A \to B$ is a function, $X \subseteq A$, $Y \subseteq B$.

- We write $f(X) = \{f(x) : x \in X\}$ for the \textbf{image} of X under f.
- We write $f^{-1}(Y) = \{x \in A : f(x) \in Y\}$ for the \textbf{preimage} of Y under f.

Example: $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$.

- $f(3) = 9$
- $f(\{3, -3\}) = \{9\}$
- $f([-4, 4]) = [0, 16]$
- $f^{-1}([0, 4]) = $
- $f^{-1}([-4, 4]) = $
- $f^{-1}(\{-2\}) = $
Suppose \(f : A \to B \) is a function, \(X \subseteq A, \ Y \subseteq B \).

- We write \(f(X) = \{ f(x) : x \in X \} \) for the **image** of \(X \) under \(f \).

- We write \(f^{-1}(Y) = \{ x \in A : f(x) \in Y \} \) for the **preimage** of \(Y \) under \(f \).

Example: \(f : \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 \).

- \(f(3) = 9 \)
- \(f(\{3, -3\}) = \{9\} \)
- \(f([-4, 4]) = [0, 16] \)
- \(f^{-1}([0, 4]) = [-2, 2] \)
- \(f^{-1}([-4, 4]) = \)
- \(f^{-1}(\{-2\}) = \)
Notation

Image, Preimage

Suppose $f : A \rightarrow B$ is a function, $X \subseteq A$, $Y \subseteq B$.

- We write $f(X) = \{f(x) : x \in X\}$ for the **image** of X under f.
- We write $f^{-1}(Y) = \{x \in A : f(x) \in Y\}$ for the **preimage** of Y under f.

Example: $f : \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^2$.

- $f(3) = 9$
- $f(\{3, -3\}) = \{9\}$
- $f([-4, 4]) = [0, 16]$
- $f^{-1}([0, 4]) = [-2, 2]$
- $f^{-1}([-4, 4]) = [-2, 2]$
- $f^{-1}(\{-2\}) =$
Image, Preimage

Suppose \(f : A \rightarrow B \) is a function, \(X \subseteq A \), \(Y \subseteq B \).

- We write \(f(X) = \{f(x) : x \in X\} \) for the **image** of \(X \) under \(f \).
- We write \(f^{-1}(Y) = \{x \in A : f(x) \in Y\} \) for the **preimage** of \(Y \) under \(f \).

Example: \(f : \mathbb{R} \rightarrow \mathbb{R} \), \(f(x) = x^2 \).

- \(f(3) = 9 \)
- \(f(\{3, -3\}) = \{9\} \)
- \(f([-4, 4]) = [0, 16] \)
- \(f^{-1}([0, 4]) = [-2, 2] \)
- \(f^{-1}([-4, 4]) = [-2, 2] \)
- \(f^{-1}(\{-2\}) = \emptyset \)
Theorem 12.4

Suppose $f : A \rightarrow B$ is a function. Let $W, X \subseteq A$ and $Y, Z \subseteq B$. Then:

- $f(W \cap X) \subseteq f(W) \cap f(X)$
- $f(W \cup X) = f(W) \cup f(X)$
- $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$
- $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$
- $X \subseteq f^{-1}(f(X))$
- $f(f^{-1}(Y)) \subseteq Y$
Theorem 12.4

Suppose $f : A \rightarrow B$ is a function. Let $W, X \subseteq A$ and $Y, Z \subseteq B$. Then:

- $f(W \cap X) \subseteq f(W) \cap f(X)$
- $f(W \cup X) = f(W) \cup f(X)$
- $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$
- $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$
- $X \subseteq f^{-1}(f(X))$
- $f(f^{-1}(Y)) \subseteq Y$

Claim: $f(W \cap X) \subseteq f(W) \cap f(X)$.

Proof:

Let $y \in f(W \cap X)$. Then there exists $x \in W \cap X$ such that $f(x) = y$. Since x is in both W and X, we know $f(x)$ is in both $f(W)$ and $f(X)$. Therefore, $x \in f(W) \cap f(X)$, and we conclude $f(W \cap X) \subseteq f(W) \cap f(X)$.

Give an example where $f(W \cap X) \neq f(W) \cap f(X)$.

$f(x) = x^2$, $W = [-1, 0]$, $Z = [0, 1]$.

Theorem 12.4

Suppose $f : A \to B$ is a function. Let $W, X \subseteq A$ and $Y, Z \subseteq B$. Then:

- $f(W \cap X) \subseteq f(W) \cap f(X)$
- $f(W \cup X) = f(W) \cup f(X)$
- $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$
- $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$
- $X \subseteq f^{-1}(f(X))$
- $f(f^{-1}(Y)) \subseteq Y$

Claim: $f(W \cap X) \subseteq f(W) \cap f(X)$.

Proof: Let $y \in f(W \cap X)$. Then there exists $x \in W \cap X$ such that $f(x) = y$. Since x is in both W and X, we know $f(x)$ is in both $f(W)$ and $f(X)$. Then $x \in f(W) \cap f(X)$. We conclude $f(W \cap X) \subseteq f(W) \cap f(X)$.

Give an example where $f(W \cap X) \neq f(W) \cap f(X)$. $f(x) = x^2$, $W = [-1,0]$, $Z = [0,1]$.

Theorem 12.4

Suppose \(f : A \to B \) is a function. Let \(W, X \subseteq A \) and \(Y, Z \subseteq B \). Then:

- \(f(W \cap X) \subseteq f(W) \cap f(X) \)
- \(f(W \cup X) = f(W) \cup f(X) \)
- \(f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z) \)
- \(f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z) \)
- \(X \subseteq f^{-1}(f(X)) \)
- \(f(f^{-1}(Y)) \subseteq Y \)

Claim: \(f(W \cap X) \subseteq f(W) \cap f(X) \).
Proof: Let \(y \in f(W \cap X) \). Then there exists \(x \in W \cap X \) such that \(f(x) = y \). Since \(x \) is in both \(W \) and \(X \), we know \(f(x) \) is in both \(f(W) \) and \(f(X) \). Then \(x \in f(W) \cap f(X) \). We conclude \(f(W \cap X) \subseteq f(W) \cap f(X) \).

Give an example where \(f(W \cap X) \neq f(W) \cap f(X) \).
Theorem 12.4

Suppose $f : A \to B$ is a function. Let $W, X \subseteq A$ and $Y, Z \subseteq B$. Then:

- $f(W \cap X) \subseteq f(W) \cap f(X)$
- $f(W \cup X) = f(W) \cup f(X)$
- $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$
- $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$
- $X \subseteq f^{-1}(f(X))$
- $f(f^{-1}(Y)) \subseteq Y$

Claim: $f(W \cap X) \subseteq f(W) \cap f(X)$.
Proof: Let $y \in f(W \cap X)$. Then there exists $x \in W \cap X$ such that $f(x) = y$. Since x is in both W and X, we know $f(x)$ is in both $f(W)$ and $f(X)$. Then $x \in f(W) \cap f(X)$. We conclude $f(W \cap X) \subseteq f(W) \cap f(X)$.

Give an example where $f(W \cap X) \neq f(W) \cap f(X)$.

$f(x) = x^2$, $W = [-1, 0]$, $Z = [0, 1]$.
Theorem 12.4

Suppose $f : A \to B$ is a function. Let $W, X \subseteq A$ and $Y, Z \subseteq B$. Then:

- $f(W \cap X) \subseteq f(W) \cap f(X)$
- $f(W \cup X) = f(W) \cup f(X)$
- $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$
- $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$
- $X \subseteq f^{-1}(f(X))$
- $f \left(f^{-1}(Y) \right) \subseteq Y$
Theorem 12.4

Suppose \(f : A \to B \) is a function. Let \(W, X \subseteq A \) and \(Y, Z \subseteq B \). Then:

- \(f(W \cap X) \subseteq f(W) \cap f(X) \)
- \(f(W \cup X) = f(W) \cup f(X) \)
- \(f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z) \)
- \(f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z) \)
- \(X \subseteq f^{-1}(f(X)) \)
- \(f(f^{-1}(Y)) \subseteq Y \)

Suppose \(f \) is injective. Then show that \(f(W \cap X) = f(W) \cap f(X) \).
Theorem 12.4

Suppose $f : A \rightarrow B$ is a function. Let $W, X \subseteq A$ and $Y, Z \subseteq B$. Then:

- $f(W \cap X) \subseteq f(W) \cap f(X)$
- $f(W \cup X) = f(W) \cup f(X)$
- $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$
- $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$
- $X \subseteq f^{-1}(f(X))$
- $f(f^{-1}(Y)) \subseteq Y$

Suppose f is injective. Then show that $f(W \cap X) = f(W) \cap f(X)$.
Proof: We already showed $f(W \cap X) \subseteq f(W) \cap f(X)$. Let $y \in f(W) \cap f(X)$. Then there exist x_1 and x_2, $x_1 \in W$ and $x_2 \in X$, such that $f(x_1) = y$ and $f(x_2) = y$. Since f is injective, $x_1 = x_2$, so $x_1 \in W \cap X$, so $y \in f(W \cap X)$. Hence $f(W) \cap f(X) \subseteq f(W \cap X)$, and so the claim holds.