Mathematical Induction

10. Mathematical Induction

10.1 Strong Induction

10.2 Smallest Counterexample

Like dominoes!
10. Mathematical Induction

10.1 Strong Induction

10.2 Smallest Counterexample

Like dominoes!
Mathematical Induction

10. Mathematical Induction

10.1 Strong Induction

10.2 Smallest Counterexample

Like dominoes!
Mathematical Induction

10. Mathematical Induction

10.1 Strong Induction

10.2 Smallest Counterexample

Like dominoes!
Mathematical Induction

Like dominoes!
Mathematical Induction

Like dominoes!
Mathematical Induction

Like dominoes!
Like dominoes!
Mathematical Induction

Like dominoes!
Mathematical Induction

Like dominoes!
Mathematical Induction

For any $k \in \mathbb{N}$, if S_k is true, then S_{k+1} is true.
(This is called the “inductive step.” The assumption S_k is true is called
the “inductive hypothesis.”)
Mathematical Induction

- For any \(k \in \mathbb{N} \), if \(S_k \) is true, then \(S_{k+1} \) is true.
 (This is called the “inductive step.” The assumption \(S_k \) is true is called the “inductive hypothesis.”)
For any $k \in \mathbb{N}$, if S_k is true, then S_{k+1} is true.
(This is called the “inductive step.” The assumption S_k is true is called the “inductive hypothesis.”)
Mathematical Induction

- For any $k \in \mathbb{N}$, if S_k is true, then S_{k+1} is true.
 (This is called the “inductive step.” The assumption S_k is true is called the “inductive hypothesis.”)

- S_a is true for some $a \in \mathbb{N}$.
 (This is called the “base case.”)
For any $k \in \mathbb{N}$, if S_k is true, then S_{k+1} is true.
(This is called the “inductive step.” The assumption S_k is true is called the “inductive hypothesis.”)

- S_a is true for some $a \in \mathbb{N}$.
 (This is called the “base case.”)

- Therefore, S_k is true for all $k \geq a$.
Proposition: Suppose $n \in \mathbb{N}$. Then $5|(n^5 - n)$
Proposition: Suppose \(n \in \mathbb{N} \). Then \(5|(n^5 - n) \)

Proof: (by induction)

- Let \(k \in \mathbb{N} \), and suppose \(5|(k^5 - k) \). Then there exists some \(x \in \mathbb{Z} \) such that \(k^5 - k = 5x \). Then:

\[
(k + 1)^5 - (k + 1) = [k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1] - (k + 1)
\]

\[
= [k^5 - k] + [5k^4 + 10k^3 + 10k^2 + 5k]
\]

\[
= 5x + [5k^4 + 10k^3 + 10k^2 + 5k]
\]

\[
= 5[x + k^4 + 2k^3 + 2k^2 + k]
\]

So, \(5 \mid ((k + 1)^5 - (k + 1)) \)

- When \(n = 1 \), \(n^5 - n = 0 \), so \(5|(n^5 - n) \).

- It follow by induction that, for every \(n \in \mathbb{N} \), \(5|(n^5 - n) \).
Proposition: Suppose $n \in \mathbb{N}$. Then $\sum_{k=0}^{n-1} 2^k = 2^n - 1.$
Proposition: Suppose $n \in \mathbb{N}$. Then $\sum_{k=0}^{n-1} 2^k = 2^n - 1$.

Proof: (by induction)

- Let $m \in \mathbb{N}$, and suppose $\sum_{k=0}^{m-1} 2^k = 2^m - 1$. Then:

\[
\sum_{k=0}^{m} 2^k = \sum_{k=0}^{m-1} 2^k + 2^m = 2^m + (2^m - 1) = 2(2^m) - 1 = 2^{m+1} - 1
\]

So, if the statement holds for $n = m$, then it also holds for $n = m + 1$.

- When $n = 1$, $\sum_{k=0}^{n-1} 2^k = 2^0 = 1$, and $1 = 2^n - 1$, so the statement holds when $n = 1$.

- It follows by induction that, for every $n \in \mathbb{N}$, $\sum_{k=0}^{n-1} 2^k = 2^n - 1$.
Mathematical Induction

Proposition: Let \(f(x) = x \ln x \). Then for all \(n \in \mathbb{N} \) such that \(n \geq 2 \),

\[
f^{(n)}(x) = (-1)^n(n - 2)!x^{1-n}.
\]

(Recall \(0! = 1 \).)
Proposition: Let $f(x) = x \ln x$. Then for all $n \in \mathbb{N}$ such that $n \geq 2$,

$$f^{(n)}(x) = (-1)^n(n-2)!x^{1-n}.$$

(Recall $0! = 1$.)

Proof: (by induction)

- Suppose $k \in \mathbb{N}$ and $f^{(k)}(x) = (-1)^k(k-2)!x^{1-k}$. Then

$$f^{(k+1)}(x) = \frac{d}{dx} \left\{ f^{(k)}(x) \right\}$$

$$= \frac{d}{dx} \left\{ (-1)^k(k-2)!x^{1-k} \right\}$$

$$= (1 - k)(-1)^k(k-2)!x^{1-k-1}$$

$$= -(k - 1)(-1)^k(k-2)!x^{1-(k+1)}$$

$$= (-1)^{k+1}(k - 1)!x^{1-k+1}$$

So, if the statement holds for $n = k$, then it also holds for $n = k + 1$.

- Note $f'(x) = \ln x + 1$ (by the product rule), so

$$f^{(2)}(x) = \frac{1}{x} = (-1)^20!x^{1-2},$$

so the statement holds for $n = 2$.

- By induction, we conclude the statement holds for all natural $n \geq 2$.
Proposition: Let \(f(x) = e^x \) Then \(f^{(n)}(x) = 0 \) for all \(n \in \mathbb{N} \).

Proof:

- Suppose \(f^{(n)}(x) = 0 \). Then \(f^{(n+1)}(x) = \frac{d}{dx}\{0\} = 0 \). So, if the statement holds for \(n \), then it also holds for \(n + 1 \).
- We conclude by induction that \(f^{(n)}(x) = 0 \) for all \(n \in \mathbb{N} \).
Cautionary Tale

Proposition: Let $f(x) = e^x$ Then $f^{(n)}(x) = 0$ for all $n \in \mathbb{N}$.

Proof:

- Suppose $f^{(n)}(x) = 0$. Then $f^{(n+1)}(x) = \frac{d}{dx} \{0\} = 0$. So, if the statement holds for n, then it also holds for $n + 1$.
- We conclude by induction that $f^{(n)}(x) = 0$ for all $n \in \mathbb{N}$.

We need a base case! This is clearly false.
Induction: Triominoes

![Triomino Diagram]
Induction: Triominoes

Triomino

4 × 4 chessboard
Induction: Triominoes

10. Mathematical Induction
10.1 Strong Induction
10.2 Smallest Counterexample

Triomino
Induction: Triominoes

Proposition: For any $n \in \mathbb{N}$, a chessboard of dimensions $2^n \times 2^n$ that is missing any single square can be tiled by triominoes.
Induction: Triominoes

Proposition: For any \(n \in \mathbb{N} \), a chessboard of dimensions \(2^n \times 2^n \) that is missing any single square can be tiled by triominoes.

Proof: (by induction)

- When \(n = 1 \), the board is exactly the shape of a single triomino, so it can be tiled.
Proposition: For any $n \in \mathbb{N}$, a chessboard of dimensions $2^n \times 2^n$ that is missing any single square can be tiled by triominoes.

Proof: (by induction)

- When $n = 1$, the board is exactly the shape of a single triomino, so it can be tiled.
- Suppose any board of dimensions $2^n \times 2^n$ missing one square can be tiled. Consider a board of dimension $2^{n+1} \times 2^{n+1}$, missing any one square.
Proposition: For any $n \in \mathbb{N}$, a chessboard of dimensions $2^n \times 2^n$ that is missing any single square can be tiled by triominoes.

Proof: (by induction)

- When $n = 1$, the board is exactly the shape of a single triomino, so it can be tiled.

- Suppose any board of dimensions $2^n \times 2^n$ missing one square can be tiled. Consider a board of dimension $2^{n+1} \times 2^{n+1}$, missing any one square. Then we can cut the board into four equal-sized boards, each of dimension $2^n \times 2^n$. One of these contains the missing square; by the inductive hypothesis, this can be tiled. The other three smaller boards do not contain any missing pieces.
Induction: Triominoes

Proposition: For any $n \in \mathbb{N}$, a chessboard of dimensions $2^n \times 2^n$ that is missing any single square can be tiled by triominoes.

Proof: (by induction)

- When $n = 1$, the board is exactly the shape of a single triomino, so it can be tiled.

- Suppose any board of dimensions $2^n \times 2^n$ missing one square can be tiled. Consider a board of dimension $2^{n+1} \times 2^{n+1}$, missing any one square. Then we can cut the board into four equal-sized boards, each of dimension $2^n \times 2^n$. One of these contains the missing square; by the inductive hypothesis, this can be tiled. The other three smaller boards do not contain any missing pieces. Place a triomino on the three squares belonging to the three smaller boards that meet in the middle of the board (as in the picture below). Now the smaller boards are all of size $2^n \times 2^n$, and we need to tile all but one of their squares. By the inductive hypothesis, we can finish the tiling.

- We conclude that the proposition holds.
Triominoes tiling

10. Mathematical Induction
 10.1 Strong Induction
 10.2 Smallest Counterexample
Triominoes tiling
Triominoes tiling
Corollary: For any $n \in \mathbb{N}$, $3|2^{2n} - 1$.
Corollary: For any $n \in \mathbb{N}$, $3|2^n - 1$.

Proof: $2^n - 1$ is the number of squares on a chessboard of dimension $2^n \times 2^n$ that’s missing one piece. Since these squares can be covered completely by triomino pieces that have three squares each, $3|2^n - 1$.

Triomino Corollary
Proposition: Let \(p \) be prime. For any integers \(a_1, \ldots, a_n \), if \(p \) divides the product \(a_1 \cdots a_n \), then \(p \) divides some \(a_i \), \(1 \leq i \leq n \).
Prime Divisors

Proposition: Let p be prime. For any integers a_1, \ldots, a_n, if p divides the product $a_1 \cdots a_n$, then p divides some a_i, $1 \leq i \leq n$.

Lemma: If a and b are integers with $\gcd(a, b) = 1$, then there exist $k, \ell \in \mathbb{Z}$ such that $ak + b\ell = 1$.
Prime Divisors

Proposition: Let p be prime. For any integers a_1, \ldots, a_n, if p divides the product $a_1 \cdot \cdots \cdot a_n$, then p divides some a_i, $1 \leq i \leq n$.

Lemma: If a and b are integers with $\gcd(a, b) = 1$, then there exist $k, \ell \in \mathbb{Z}$ such that $ak + bl = 1$.

Proof: We proceed by induction on the number of integers. For the base case, suppose $n = 2$, and $p | a_1 a_2$. If $p | a_1$, we’re done. Suppose $p \not| a_1$. Since p is prime, $\gcd(p, a_1) = 1$, so there exist $k, \ell \in \mathbb{Z}$ such that $kp + a_1 \ell = 1$. Multiplying by a_2, we see

$$a_2 = kpa_2 + a_1a_2\ell.$$

Since $p | a_1 a_2$, we see p divides the right hand side of the equation, so $p | a_2$. This finishes the base case.

Suppose now that the corollary holds whenever $n \leq m$ for some $m \in \mathbb{Z}$. Suppose $p | a_1 \cdots a_m a_{m+1}$. Let $A = a_1 \cdots a_m$. If $p | a_{m+1}$, we’re done. If not, then since $p | A \cdot a_{m+1}$, by the base step, $p | A$. Then by the inductive hypothesis, p divides some a_i, $1 \leq i \leq m$. This finishes the proof.
Outline for proof by strong induction:
Suppose \(S_n \) is true for every \(n \leq k \). Then \(S_{k+1} \) is true as well. This part is the inductive step; the inductive hypothesis is that \(S_n \) is true for every \(n \leq k \).

We conclude by (strong) induction that \(S_k \) is true for all \(k \leq a \).
Outline for proof by strong induction:

Suppose S_n is true for every $n \leq k$. Then S_{k+1} is true as well. This part is the inductive step; the inductive hypothesis is that S_n is true for every $n \leq k$.

Base case(s): We conclude by (strong) induction that S_k is true for all $k \leq a$.

$S_0, S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9, S_{10}$
Strong Induction

Outline for proof by strong induction:
Suppose S_n is true for every $n \leq k$. Then S_{k+1} is true as well.
This part is the inductive step; the inductive hypothesis is that S_n is true for every $n \leq k$.

Base case(s)
We conclude by (strong) induction that S_k is true for all $k \leq a$.
Outline for proof by strong induction:

- Suppose S_n is true for every $n \leq k$. Then S_{k+1} is true as well.

 This part is the inductive step;
 the inductive hypothesis is that S_n is true for every $n \leq k$.
Outline for proof by strong induction:

- Suppose S_n is true for every $n \leq k$. Then S_{k+1} is true as well.

 This part is the inductive step;

 the inductive hypothesis is that S_n is true for every $n \leq k$.

- S_k is true for all $k \leq a$.

 Base case(s)
Outline for proof by strong induction:

- Suppose S_n is true for every $n \leq k$. Then S_{k+1} is true as well. This part is the inductive step; the inductive hypothesis is that S_n is true for every $n \leq k$.

- S_k is true for all $k \leq a$.
 Base case(s)

- We conclude by (strong) induction that S_k is true for all k.
Outline for proof by strong induction:

- Suppose \(S_n \) is true for every \(n \leq k \). Then \(S_{k+1} \) is true as well.
 This part is the inductive step;
 the inductive hypothesis is that \(S_n \) is true for every \(n \leq k \).

- \(S_k \) is true for all \(k \leq a \).
 Base case(s)

- We conclude by (strong) induction that \(S_k \) is true for all \(k \).
Outline for proof by strong induction:

- Suppose S_n is true for every $n \leq k$. Then S_{k+1} is true as well. This part is the inductive step; the inductive hypothesis is that S_n is true for every $n \leq k$.

- S_k is true for all $k \leq a$. Base case(s)

- We conclude by (strong) induction that S_k is true for all k.

"S"
Outline for proof by strong induction:

- Suppose \(S_n \) is true for every \(n \leq k \). Then \(S_{k+1} \) is true as well.
 This part is the inductive step; the inductive hypothesis is that \(S_n \) is true for every \(n \leq k \).

- \(S_k \) is true for all \(k \leq a \).
 Base case(s)

- We conclude by (strong) induction that \(S_k \) is true for all \(k \).
Proposition: Let \(\{a_n\} \) be the sequence of numbers defined as follows:

- \(a_1 = 2 \)
- \(a_2 = 4 \)
- \(a_3 = 8 \)
- \(a_n = a_{n-1} + a_{n-2} + 2a_{n-3} \) for every natural \(n \geq 4 \).

Then \(a_n = 2^n \) for every \(n \in \mathbb{N} \).
Proposition: Let \(\{a_n\} \) be the sequence of numbers defined as follows:

- \(a_1 = 2 \)
- \(a_2 = 4 \)
- \(a_3 = 8 \)
- \(a_n = a_{n-1} + a_{n-2} + 2a_{n-3} \) for every natural \(n \geq 4 \).

Then \(a_n = 2^n \) for every \(n \in \mathbb{N} \).

Proof:

- Suppose \(a_n = 2^n \) for every natural \(n \leq k \), and \(k \geq 3 \). Then \(k + 1 \geq 4 \), so:

 \[
 a_{k+1} = a_k + a_{k-1} + 2a_{k-2}
 \]

 \[
 = 2^k + 2^{k-1} + 2 \cdot 2^{k-2} = 2^k + 2 \cdot 2^{k-1}
 \]

 \[
 = 2 \cdot 2^k = 2^{k+1}
 \]

 Then \(a_{k+1} = 2^{k+1} \) for every natural \(n \leq k + 1 \).

- Note \(a_1 = 2^1 \), \(a_2 = 2^2 \), and \(a_3 = 2^3 \).

- By strong induction, we conclude \(a_n = 2^n \) for every \(n \in \mathbb{N} \).
Game of Nim

There are two piles of matches, and two players. A turn consists of a player may take as many matches as they like (but at least one) from one of the piles. The player who takes the last match wins.

Proposition:
In a game of Nim where both piles of matches are initially the same size, the second player can always win if they take an equal number of matches as their opponent did in their last term, but from the other pile.

Proof: (by induction on the initial size of the piles)
Suppose we know Player 2 can win when the sizes of the piles are less than m for some $m \in \mathbb{N}$. (Inductive Hypothesis) Player 1 takes k matches from one pile, for some $k \leq m$. If $k = m$, then Player 2 finishes off the remaining pile and wins. If $k \neq m$, then after Player 2's move, each pile has size $m - k$, and $1 \leq m - k < m$, so by the IH, Player 2 can now win.

When each pile has size 1, Player 2 wins on their first move.

We conclude by induction that the proposition is true.
Strong Induction: Nim

Game of Nim

There are two piles of matches, and two players. A turn consists of a player may take as many matches as they like (but at least one) from one of the piles. The player who takes the last match wins.

Proposition: In a game of Nim where both piles of matches are initially the same size, the second player can always win if they take an equal number of matches as their opponent did in their last term, but from the other pile.
Game of Nim

There are two piles of matches, and two players. A turn consists of a player may take as many matches as they like (but at least one) from one of the piles. The player who takes the last match wins.

Proposition: In a game of Nim where both piles of matches are initially the same size, the second player can always win if they take an equal number of matches as their opponent did in their last term, but from the other pile.

Proof: (by induction on the initial size of the piles)

- Suppose we know Player 2 can win when the sizes of the piles are less than m for some $m \in \mathbb{N}$. (Inductive Hypothesis) Player 1 takes k matches from one pile, for some $k \leq m$. If $k = m$, then Player 2 finishes off the remaining pile and wins. If $k \neq m$, then after Player 2’s move, each pile has size $m - k$, and $1 \leq m - k < m$, so by the IH, Player 2 can now win.

- When each pile has size 1, Player 2 wins on their first move.

- We conclude by induction that the proposition is true.
Proposition: For any convex polygon with $n \geq 3$ edges, the sum of the interior angles is $(n - 2)180$ degrees.

Lemma: If you draw a line between any two (non-consecutive) points on a convex polygon, you divide that convex polygon into two (smaller) convex polygons.

Lemma: The interior angles of any triangle sum to 180 degrees.
Proposition: For any convex polygon with \(n \geq 3 \) edges, the sum of the interior angles is \((n - 2)180\) degrees.

Lemma: If you draw a line between any two (non-consecutive) points on a convex polygon, you divide that convex polygon into two (smaller) convex polygons.

Lemma: The interior angles of any triangle sum to 180 degrees.

- First, note that a triangle has angles summing to 180 degrees.
- Suppose the proposition holds whenever \(n \leq k - 1 \). Then consider any polygon with \(k \) edges. Draw a point between two points that are separated by only one point, so the polygon is cut into a triangle and a convex polygon on \(k - 1 \) points. Then the sum of the angles inside the triangle is 180, while the sum of the angles inside the other polygon is (by the inductive hypothesis) \(180(k - 3) \). Then the sum of the inside angles of the original polygon is \(180 + 180(k - 3) = 180(k - 2) \), so the proposition also holds for \(n = k \).
- By strong induction, we conclude the proposition holds for all natural \(n \geq 3 \).
Proposition: The statements S_1, S_2, \ldots are all true.

Proof:

- S_1 is true
Proposition: The statements S_1, S_2, \ldots are all true.

Proof:

- S_1 is true
- Suppose (by way of contradiction) that not every S_n is true
Proof by Smallest Counterexample

Proposition: The statements S_1, S_2, \ldots are all true.

Proof:

- S_1 is true
- Suppose (by way of contradiction) that not every S_n is true
- Then there exists some smallest $n \in \mathbb{N}$ such that S_n is false
Proposition: The statements S_1, S_2, \ldots are all true.

Proof:

- S_1 is true
- Suppose (by way of contradiction) that not every S_n is true
- Then there exists some smallest $n \in \mathbb{N}$ such that S_n is false
- Then S_n is false and S_{n-1} is true
Proof by Smallest Counterexample

Proposition: The statements S_1, S_2, \ldots are all true.

Proof:

- S_1 is true
- Suppose (by way of contradiction) that not every S_n is true
- Then there exists some smallest $n \in \mathbb{N}$ such that S_n is false
- Then S_n is false and S_{n-1} is true
- \[\vdots\]
- Contradiction.
Proof by Smallest Counterexample: Fibonacci Numbers

Fibonacci Sequence

\[
F_0 = 1 \quad \bullet \quad F_1 = 1 \quad \bullet \quad F_2 = 2 \quad \bullet \quad \text{For } n \geq 3 \text{ in } \mathbb{N}, \ F_n = F_{n-1} + F_{n-2}
\]
Proof by Smallest Counterexample: Fibonacci Numbers

Fibonacci Sequence

\begin{align*}
F_0 &= 1 & F_1 &= 1 & F_2 &= 2 & \text{For } n \geq 3 \text{ in } \mathbb{N}, F_n &= F_{n-1} + F_{n-2}
\end{align*}

Let \(\varphi \) be the golden ratio, \(\varphi = \frac{1 + \sqrt{5}}{2} \).

Proposition: For every \(n \in \mathbb{N} \), \(F_n < \varphi^n \).
Proof by Smallest Counterexample: Fibonacci Numbers

Let \(\varphi \) be the golden ratio, \(\varphi = \frac{1 + \sqrt{5}}{2} \).

Proposition: For every \(n \in \mathbb{N} \), \(F_n < \varphi^n \).

Proof:

- Note that \(\varphi > \frac{3}{2} \), so \(F_1 < \varphi^1 \) and \(F_2 < \frac{9}{4} < \varphi^2 \). (Base cases.)

- Suppose \(F_n \) is the first Fibonacci number such that \(F_n \geq \varphi^n \). Then \(n \geq 3 \) (by the base cases) and so \(F_{n-1} < \varphi^{n-1} \) and \(F_{n-2} < \varphi^{n-2} \). Then:

\[
\begin{align*}
\varphi^n & \leq F_n = F_{n-1} + F_{n-2} < \varphi^{n-1} + \varphi^{n-2} \\
\varphi^2 & < \varphi + 1 \\
\left(\frac{1 + \sqrt{5}}{2} \right)^2 & < \frac{1 + \sqrt{5}}{2} + 1 \\
\frac{6 + 2 \sqrt{5}}{4} & < \frac{3 + \sqrt{5}}{2} \\
3 + \sqrt{5} & < 3 + \sqrt{5}
\end{align*}
\]

This is a contradiction.

- We conclude that there does not exist any \(n \in \mathbb{N} \) such that \(F_n \geq \varphi \). Therefore, the proposition is true.
Proof by Smallest Counterexample: $4|5^n - 1$

Proposition: For every $n \in \mathbb{N}$, $4|5^n - 1$.
Proof by Smallest Counterexample: $4|5^n - 1$

Proposition: For every $n \in \mathbb{N}$, $4|5^n - 1$.

Proof:

- Note that when $n = 1$, $5|5^1 - 1$.

- Suppose n is the smallest natural number so that $4 \nmid 5^n - 1$. Then $n \geq 2$ (by the base case), so $n - 1 \in \mathbb{N}$ (that is—it isn't zero), so by hypothesis, $4|5^{n-1} - 1$. That is, there exists some $x \in \mathbb{N}$ such that $4x = 5^{n-1} - 1$.

Now:

$$5^n - 1 = 5 \cdot 5^{n-1} - 1 = 5(4x + 1) - 1$$

$$= 5(4x) + 5 - 1 = 4(5x) + 4 = 4(5x + 1)$$

This contradicts the assumption that $4 \nmid 5^n - 1$.

- We conclude that there is no natural n such that $4 \nmid 5^n - 1$, so the proposition is true.
Fundamental Theorem of Arithmetic

Every $n \in \mathbb{N}$ greater than 1 has a unique prime factorization. That is, if $n = p_1 \cdot p_2 \cdot p_3 \cdots p_k$ and $n = a_1 \cdot a_2 \cdot a_3 \cdots a_\ell$ are two prime factorizations of n, then $k = \ell$, and the primes p_i and a_i are the same (but they might be in a different order).
Fundamental Theorem of Arithmetic

Every $n \in \mathbb{N}$ greater than 1 has a unique prime factorization. That is, if $n = p_1 \cdot p_2 \cdot p_3 \cdots p_k$ and $n = a_1 \cdot a_2 \cdot a_3 \cdots a_\ell$ are two prime factorizations of n, then $k = \ell$, and the primes p_i and a_i are the same (but they might be in a different order).

This proof involves both existence and uniqueness.
Proof by Smallest Counterexample:
Fundamental Theorem of Arithmetic

Every \(n \in \mathbb{N} \) greater than 1 has a unique prime factorization. That is, if \(n = p_1 \cdot p_2 \cdot p_3 \cdots p_k \) and \(n = a_1 \cdot a_2 \cdot a_3 \cdots a_\ell \) are two prime factorizations of \(n \), then \(k = \ell \), and the primes \(p_i \) and \(a_i \) are the same (but they might be in a different order).

This proof involves both existence and uniqueness.

Proof: First, we will use strong induction to show that every integer \(n > 1 \) has a prime factorization. For the base case, suppose \(n = 2 \). Then \(2 = 2 \) is the prime factorization of \(n \). For the inductive step, suppose there exists an integer \(k \geq 2 \) such that that every integer \(n \) in \([2, k]\) has a prime factorization. We consider the integer \(k + 1 \). If \(k + 1 \) is prime, then it is its own prime factorization. If it is not prime, then \(k + 1 = ab \) for some positive integers \(a \) and \(b \), both of which are greater than 1 and less than \(k + 1 \). By the inductive hypothesis, \(a = p_1 \cdots p_k \) and \(b = a_1 \cdots a_\ell \) for primes \(p_i, a_i \). Then \(k + 1 = p_1 \cdots p_k \cdot a_1 \cdots a_\ell \). So, \(k + 1 \) has a prime factorization. We conclude by induction that every integer greater than 1 has a prime factorization.
Now we will prove uniqueness, using proof by smallest counterexample. For the base case, note that $n = 2$ has only one prime factorization, since the only prime divisor of 2 is itself. Suppose for the sake of contradiction that there is some integer $n > 2$ with different prime factorizations. Let n be, in particular, the smallest such integer, and label the factorizations $n = p_1 \cdots p_k$ and $a_1 \cdots a_\ell$. Then $p_1 | n$, so $p_1 | a_1 \cdots a_\ell$. Then by a previous theorem, $p_1 | a_i$ for some $1 \leq i \leq \ell$. Then, since a_i is prime, $a_i = p_1$. But now the integer $\frac{n}{p_1}$ has two different prime factorizations, $p_2 \cdots p_k$ and $a_1 \cdots a_{i-1} a_{i+1} \cdots a_\ell$. This contradicts that n was the smallest such integer, and finishes the proof.