Outline

Week 8: Inverses and determinants

Course Notes: 4.5, 4.6

Goals: Be able to calculate a matrix's inverse; understand the relationship between the invertibility of a matrix and the solutions of associated linear systems; calculate the determinant of a square matrix of any size, and learn some tricks to make the computation more efficient.

Identity Matrix

The identity matrix, \(I \), is a square matrix with 1s along its main diagonal, and 0s everywhere else.

For any matrix \(A \) that can be multiplied with \(I \), \(AI = IA = A \).
What is Division?

\[(a + 5)x = 7x\]

Divide both sides by \(x\) **as long as** \(x \neq 0\)

There are some numbers we can’t divide by:

\[
\frac{(a + 5)x}{x} = 7x
\]

To divide by \(x\), we multiply by a special number (in this case, \(1/x\))

that has the following property: \(x(1/x)\) gives the multiplicative

identity.

\[
(a + 5)(1) = 7(1)
\]

1 is the multiplicative identity: If you multiply it by a number, that

number doesn’t change.

\[(a + 5) = 7\]

Matrix Inverses: The Closest we can Get to Division

Linear System Setup:

\[
\begin{align*}
 x + 2y + 3z &= 10 \\
 4x + 5y + 6z &= 20 \\
 7x + 8y + 9z &= 30
\end{align*}
\]

\[
A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad b = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}
\]

\[
Ax = b
\]

Solve for \(x\).
Definition

A matrix A^{-1} is the inverse of a square matrix A if $A^{-1}A = I$, where I is the identity matrix. In this case, also $AA^{-1} = I$.

What do you think the inverse of the following matrix should be?

$$\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}$$

What do you think the inverse of the following matrix should be?

$$\begin{pmatrix}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{pmatrix}$$

Existence of Matrix Inverses

Definition

A matrix A^{-1} is the inverse of a square matrix A if

$$A^{-1}A = I$$

where I is the identity matrix.

Find the inverses of the following matrices:

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad D = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

If $Ax = b$ and A^{-1} exists, then $x = A^{-1}b$.

If A^{-1} exists, then $Ax = b$ has a unique solution.
If an Inverse Exists....

Theorem

If an \(n \times n \) matrix \(A \) has an inverse \(A^{-1} \), then for any \(b \) in \(\mathbb{R}^n \),

\[
Ax = b
\]

has precisely one solution, and that solution is \(x = A^{-1}b \).

So, if \(Ax = b \) has no solutions:

If \(Ax = b \) has infinitely many solutions:

Solutions to Systems of Equations

Let \(A \) be an \(n \times n \) matrix. The following statements are equivalent:

1) \(Ax = b \) has exactly one solution for any \(b \).
2) \(Ax = 0 \) has no nonzero solutions.
3) The rank of \(A \) is \(n \).
4) The reduced form of \(A \) has no zeroes along the main diagonal.

By previous theorem, if \(A \) is invertible, all these statements hold.

If \(Ax = b \) has a unique solution for every \(b \), is \(A \) invertible?

If \(T^{-1} \) is a linear transformation, then we can find a matrix \(B \) such that

\[
T^{-1}(b) = Bb
\]

for every \(b \). Then: \(x = Bb = B(Ax) = (BA)x \), so \(BA = I \).
If $Ax = b$ has a unique solution for every b, is A invertible?

Need to show: T^{-1} is a linear transformation.

- Fix A.
- Given b, we can solve $Ax = b$ for x.
- So, given b, we find x.
- This is a transformation: $T^{-1}(b) = x$. That is, given input b, the output x is the vector we multiply A by to get b.
- T^{-1} is linear:
 - Let $T^{-1}(b_1) = x_1$ and $T^{-1}(b_2) = x_2$.
 - Note $A(x_1 + x_2) = Ax_1 + Ax_2 = b_1 + b_2$.
 So, $T^{-1}(b_1 + b_2) = x_1 + x_2 = T^{-1}(b_1) + T^{-1}(b_2)$.
 So, T^{-1} preserves addition.
 - Note $A(sx_1) = s(Ax_1) = s(b_1)$, so $T^{-1}(sb_1) = sx_1 = sT^{-1}(b_1)$.
 So, T^{-1} preserves scalar multiplication.
- Since T^{-1} is a linear transformation from one collection of vectors to another, there exists some matrix B such that $T^{-1}(b) = Bb$.
- Consider $T^{-1}(Ax)$. Note $T^{-1}(Ax) = x$ for every x in \mathbb{R}^n, so $B(Ax) = x$ for every x. Therefore, $BA = I$, so $B = A^{-1}$.

Notes
An observation that will help compute inverses

Elementary row operations are equivalent to matrix multiplication.

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

More Conveniently Computing the Inverse (when it exists)

$$\begin{bmatrix} A & I \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} I & A^{-1} \end{bmatrix}$$

Calculate the inverse of

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & 6 \\ 2 & 0 & 7 \end{bmatrix}$$

Calculate the inverse of

$$B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
Using Inverses

Suppose \(M = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \). Then (as we just found) \(M^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix} \).
If \(Mx = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \), what is \(x \)?

Suppose \(A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix} \) and \(A^{-1} = \begin{bmatrix} 7 & 0 & -3 \\ -2 & 1 & 0 \end{bmatrix} \).
If \(BA = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \), what is \(B \)?

Inverses and Products

Suppose \(A \) and \(B \) are invertible matrices, with the same dimensions. Simplify:
\[
ABB^{-1}A^{-1}
\]
What is \((ABC)^{-1}\)?

Simplify:
\[
[(AC)^{-1}A(AB)^{-1}]^{-1}
\]

Determinants

Recall:
\[
\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc
\]

In general:
\[
\det \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix} = a_{1,1}D_{1,1} - a_{1,2}D_{1,2} + a_{1,3}D_{1,3} - \cdots \pm a_{1,n}D_{1,n}
\]
where \(D_{i,j} \) is the determinant of the matrix obtained from \(A \) by deleting row \(i \) and column \(j \).
Calculate

\[
\begin{vmatrix}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 1 \\
2 & 0 & 1 & 0 \\
1 & 0 & 2 & 0 \\
\end{vmatrix}
= \\
\begin{vmatrix}
0 & 1 & 0 & 1 \\
1 & 5 & 0 & 2 \\
2 & 0 & 5 & 1 \\
0 & 1 & 3 & 1 \\
\end{vmatrix}

Determinants of Triangular Matrices

Calculate, where \(\ast \) is any number:

\[
\begin{vmatrix}
1 & 0 & 0 & 0 \\
\ast & 2 & 0 & 0 \\
\ast \ast & 3 & 0 & 0 \\
\ast \ast \ast & 4 & 0 \\
\ast \ast \ast \ast & 5 \\
\end{vmatrix}

\[
\begin{vmatrix}
1 & \ast & \ast & \ast \\
0 & 2 & \ast & \ast \\
0 & 0 & 3 & \ast \\
0 & 0 & 0 & 4 \\
\end{vmatrix}

Fact: for any square matrix \(A \), \(\det(A) = \det(A^T) \)

Determinants of Upper Triangular Matrices

Is the determinant of ANY triangular matrix the product of the diagonal entries?
Careful: this ONLY works with triangular matrices!

More Determinant Tricks

Helpful Facts for Calculating the Determinant of a Square Matrix A:

1. If B is obtained from A by multiplying **one row** of A by the constant c then $\det B = c \det A$.
2. If B is obtained from A by **switching** two rows of A then $\det B = -\det A$.
3. If B is obtained from A by **adding a multiple of one row** to another then $\det B = \det A$.
4. $\det(A) = 0$ if and only if A is not invertible.
5. For all matrices B of the same size as A, $\det(AB) = \det(A)\det(B)$.
6. $\det(A^T) = \det(A)$.

Remark: You should understand how the first three lead to the fourth; otherwise, the proofs are optional, found in the notes.

If A is invertible, then $\det(A) \neq 0$

- A is invertible
- we can row-reduce A to the identity matrix
- we can row-reduce A to a matrix with determinant 1
 - Adding a multiple of one row to another row does not change the determinant
 - Swapping two rows multiplies the determinant by -1
 - Multiplying a row by a constant a multiplies the determinant by a
- $c \det(A) = 1$, where c is some constant
- $\det(A) \neq 0$
Solutions to Systems of Equations

Let A be an n-by-n matrix. The following statements are equivalent:
1) $Ax = b$ has exactly one solution for any b.
2) $Ax = 0$ has no nonzero solutions.
3) The rank of A is n.
4) The reduced form of A has no zeroes along the main diagonal.
5) A is invertible.
6) $\det(A) \neq 0$

Is A invertible?

$A = \begin{bmatrix} 72 & 9 & 8 & 16 \\ 0 & 4 & 3 & -9 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & 21 \end{bmatrix}$

$\det \begin{bmatrix} 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210$; $\det \begin{bmatrix} 0 & 1 & 2 & 0 \\ 10 & 0 & 1 \\ 10 & 0 & 5 & 3 \\ 0 & 2 & 1 & 1 \end{bmatrix} = ?$

Calculate:

$\det \begin{bmatrix} 1 & 5 & 10 & 15 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 1 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$

$\det \begin{bmatrix} 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix} = -210$; $\det \begin{bmatrix} 0 & 20 & 20 & 0 \\ 1 & 5 & 0 & 2 \\ 2 & 0 & 5 & 1 \\ 0 & 1 & 3 & 1 \end{bmatrix}$

$\det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 1 & 5 & 0 & 2 \\ 0 & 10 & 10 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix}$

$\det \begin{bmatrix} 2 & 0 & 5 & 1 \\ 0 & 10 & 10 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{bmatrix}$
Suppose det $A = 5$ for an invertible matrix A. What is $\det(A^{-1})$?

Suppose A is an n-by-n matrix with determinant 5. What is the determinant of $3A$?

Suppose A is an n-by-n matrix, and x and y are distinct vectors in \mathbb{R}^n with $Ax = Ay$. What is $\det(A)$?

Using Row Reduction to Calculate a Determinant

$$\begin{pmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 4 \\ 1 & 2 & 8 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

$\det(\begin{pmatrix} 2 & 2 & 1 \\ 1 & 1 & 1 \\ 3 & 5 & 8 \end{pmatrix}) = \det(\begin{pmatrix} 0 & 0 & -1 \\ 1 & 1 & 1 \\ 3 & 5 & 8 \end{pmatrix}) = -(-1) \det(\begin{pmatrix} 1 & 1 & 1 \\ 3 & 5 & 8 \\ 9 & 6 & 1 \end{pmatrix})$

$= -\det(\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 5 \\ 0 & -3 & -8 \end{pmatrix}) = \det(\begin{pmatrix} 1 & 2 & -3 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix}) = 1 \det(\begin{pmatrix} 2 & 5 \\ -3 & -8 \end{pmatrix})$

$= -16 + 15 = -1$

Is the original 4-by-4 matrix invertible?
Determinant Expansion across Alternate Lines

“Line” means “row or column”

\[
\begin{vmatrix}
+ & - & + & - \\
- & + & - & + \\
+ & - & + & - \\
- & + & - & + \\
\end{vmatrix}
\]

\[
\begin{vmatrix}
9 & 8 & 5 & 6 & 10 \\
1 & 0 & 0 & 0 & 1 \\
7 & 0 & 1 & 1 & 1 \\
8 & 0 & 1 & 1 & 1 \\
4 & 3 & 5 & 6 & 7 \\
\end{vmatrix}
\]

\[
\begin{vmatrix}
8 & 9 & 5 & 6 \\
0 & 1 & 1 & 0 \\
0 & 7 & 1 & 1 \\
0 & 8 & 1 & 1 \\
\end{vmatrix}
\]

More practice

\[
\begin{vmatrix}
2 & 5 & 3 & 4 \\
0 & 1 & 2 & 0 \\
4 & 4 & 6 & 9 \\
10 & 5 & 7 & 4 \\
\end{vmatrix}
\]