Outline

Week 7: Rotations, projections and reflections in 2D; matrix representation and composition of linear transformations; random walks; transpose.

Course Notes: 4.2, 4.3, 4.4

Goals: Understand that a linear transformation of a vector can always be achieved by matrix multiplication; use specific examples of linear transformations.
For a fixed vector \mathbf{a}, let $T(\mathbf{x}) = \text{proj}_a \mathbf{x}$.
For a fixed vector \(\mathbf{a} \), let \(T(\mathbf{x}) = \text{proj}_\mathbf{a} \mathbf{x} \)
For a fixed vector \mathbf{a}, let $T(\mathbf{x}) = \text{proj}_\mathbf{a} \mathbf{x}$
For a fixed vector \(\mathbf{a} \), let \(T(\mathbf{x}) = \text{proj}_\mathbf{a} \mathbf{x} \)
Projections

For a fixed vector \(\mathbf{a} \), let \(T(\mathbf{x}) = \text{proj}_\mathbf{a} \mathbf{x} \).
For a fixed vector a, let $T(x) = \text{proj}_a x$
For a fixed vector a, let $T(x) = \text{proj}_a x$
For a fixed vector a, let $T(x) = proj_a x$.
Computing Projections

Let \(\mathbf{a} = [a_1, a_2] \) and \(\mathbf{x} = [x_1, x_2] \).

\[
\text{proj}_\mathbf{a} \mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
\]
Computing Projections

Let \(\mathbf{a} = [a_1, a_2] \) and \(\mathbf{x} = [x_1, x_2] \).

\[
\text{proj}_\mathbf{a} \mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_2^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
\]

Let \(\mathbf{a} = [1, 1] \) and \(\mathbf{x} = [2, 3] \). Calculate \(\text{proj}_\mathbf{a} \mathbf{x} \) two ways.
Computing Projections

Let \(\mathbf{a} = [a_1, a_2] \) and \(\mathbf{x} = [x_1, x_2] \).

\[
\text{proj}_\mathbf{a} \mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1a_2 \\ a_1a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
\]

Let \(\mathbf{a} = [1, 1] \) and \(\mathbf{x} = [2, 3] \). Calculate \(\text{proj}_\mathbf{a} \mathbf{x} \) two ways.

\[
T(\mathbf{x}) = \text{proj}_\mathbf{b} \left(\text{proj}_\mathbf{a} \mathbf{x} \right)
\]

Is the projection of a projection a projection? (Is there a vector \(\mathbf{c} \) so that \(T(\mathbf{x}) = \text{proj}_\mathbf{c} \mathbf{x} \)?)

Example: \(\mathbf{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \)
Reflections

For a fixed vector \(\mathbf{a} \), let \(\text{Ref}(\mathbf{x}) \) be the reflection of \(\mathbf{x} \) across the line through the origin in the direction of \(\mathbf{a} \).
Reflections

For a fixed vector \mathbf{a}, let $\text{Ref}(\mathbf{x})$ be the reflection of \mathbf{x} across the line through the origin in the direction of \mathbf{a}.

\[
\text{Ref}(\mathbf{x}) = \mathbf{x} + 2(\text{proj}_\mathbf{a}\mathbf{x} - \mathbf{x}) = 2\text{proj}_\mathbf{a}\mathbf{x} - \mathbf{x}
\]
For a fixed vector \mathbf{a}, let $\text{Ref}(\mathbf{x})$ be the reflection of \mathbf{x} across the line through the origin in the direction of \mathbf{a}.
Reflections

For a fixed vector \(\mathbf{a} \), let \(\text{Ref}(\mathbf{x}) \) be the reflection of \(\mathbf{x} \) across the line through the origin in the direction of \(\mathbf{a} \).
Reflections

For a fixed vector \mathbf{a}, let $\text{Ref}(\mathbf{x})$ be the reflection of \mathbf{x} across the line through the origin in the direction of \mathbf{a}.

\[
\text{Ref}(\mathbf{x}) = \mathbf{x} + 2(\text{proj}_a \mathbf{x} - \mathbf{x}) = 2\text{proj}_a \mathbf{x} - \mathbf{x}
\]
Reflections

For a fixed vector \mathbf{a}, let $\text{Ref}(\mathbf{x})$ be the reflection of \mathbf{x} across the line through the origin in the direction of \mathbf{a}.

\[
\text{Ref}(\mathbf{x}) = \mathbf{x} + 2(\text{proj}_a \mathbf{x} - \mathbf{x}) = 2\text{proj}_a \mathbf{x} - \mathbf{x}
\]
Reflections

\[\text{Ref}(x) = 2 \text{proj}_a x - x \]
Reflections

\[\text{Ref} (\mathbf{x}) = 2\text{proj}_a \mathbf{x} - \mathbf{x} \]

Projections:

\[\text{proj}_a \mathbf{x} = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

Identity:

\[\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]
Reflections

\[\text{Ref}(x) = 2\text{proj}_a x - x \]

Projections:

\[\text{proj}_a x = \frac{1}{a_1^2 + a_2^2} \begin{bmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

Identity:

\[\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

\[\text{Ref}(x) = 2\text{proj}_a x - x \]

\[= \begin{bmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1 a_2}{a_1^2 + a_2^2} \\ \frac{2a_1 a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]
If a is a unit vector, then $a_1^2 + a_2^2 = 1$. Then:

$$Ref(a) = \begin{bmatrix} \frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\ \frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
Cleanup

\[
Ref(x) = \begin{bmatrix}
\frac{2a_1^2}{a_1^2 + a_2^2} - 1 & \frac{2a_1a_2}{a_1^2 + a_2^2} \\
\frac{2a_1a_2}{a_1^2 + a_2^2} & \frac{2a_2^2}{a_1^2 + a_2^2} - 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

If \(a\) is a unit vector, then \(a_1^2 + a_2^2 = 1\). Then:

\[
Ref(x) = \begin{bmatrix}
2a_1^2 - 1 & 2a_1a_2 \\
2a_1a_2 & 2a_2^2 - 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]
If \(a \) is a unit vector, then \(a_1^2 + a_2^2 = 1 \). Then:

\[
Ref(x) = \begin{bmatrix}
\frac{2a_1^2}{a_1^2+a_2^2} - 1 & \frac{2a_1a_2}{a_1^2+a_2^2} \\
\frac{2a_1a_2}{a_1^2+a_2^2} & \frac{2a_2^2}{a_1^2+a_2^2} - 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

And if \(a \) makes angle \(\theta \) with the \(x \)-axis, then \(a_1 = \cos \theta \) and \(a_2 = \sin \theta \), so:

\[
Ref_\theta(x) = \begin{bmatrix}
2a_1^2 - 1 & 2a_1a_2 \\
2a_1a_2 & 2a_2^2 - 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

\[
\cos^2 \theta = \frac{1 + \cos 2\theta}{2} \quad \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \quad \sin 2\theta = 2 \sin \theta \cos \theta
\]
Cleanup

\[
\text{Ref}(\mathbf{x}) = \begin{bmatrix}
\frac{2a_1^2}{a_1^2+a_2^2} - 1 & \frac{2a_1a_2}{a_1^2+a_2^2} \\
\frac{2a_1a_2}{a_1^2+a_2^2} & \frac{2a_2^2}{a_1^2+a_2^2} - 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

If \(\mathbf{a}\) is a unit vector, then \(a_1^2 + a_2^2 = 1\). Then:

\[
\text{Ref}(\mathbf{x}) = \begin{bmatrix}
2a_1^2 - 1 & 2a_1a_2 \\
2a_1a_2 & 2a_2^2 - 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

And if \(\mathbf{a}\) makes angle \(\theta\) with the \(x\)-axis, then \(a_1 = \cos \theta\) and \(a_2 = \sin \theta\), so:

\[
\text{Ref}_\theta(\mathbf{x}) = \begin{bmatrix}
\cos(2\theta) & \sin(2\theta) \\
\sin(2\theta) & -\cos(2\theta)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

\[
\cos^2 \theta = \frac{1 + \cos 2\theta}{2} \quad \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \quad \sin 2\theta = 2 \sin \theta \cos \theta
\]
Reflections and Rotations

Compare:

$$\text{Ref}_{\theta}(x) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\text{Rot}_{\phi}(x) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
Reflections and Rotations

Compare:

\[
\text{Ref}_\theta(x) = \begin{bmatrix}
\cos(2\theta) & \sin(2\theta) \\
\sin(2\theta) & -\cos(2\theta)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

\[
\text{Rot}_\phi(x) = \begin{bmatrix}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

\[
\text{Ref}_\theta(x) \quad \text{Rot}_\phi(x)
\]
Reflections and Rotations

Compare:

$$\text{Ref}_\theta(x) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\text{Rot}_\phi(x) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
Reflections and Rotations

Compare:

\[\text{Ref}_\theta(x) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]

\[\text{Rot}_\phi(x) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]
Reflections

To reflect \mathbf{x} across the line through the origin that makes angle θ with the x-axis:

$$Ref_\theta(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
Reflections

To reflect \(\mathbf{x} \) across the line through the origin that makes angle \(\theta \) with the \(x \)-axis:

\[
\text{Ref}_\theta(\mathbf{x}) = \begin{bmatrix}
\cos(2\theta) & \sin(2\theta) \\
\sin(2\theta) & -\cos(2\theta)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

Example: find the reflection of the vector \([2, 4]\) across the line through the origin that makes an angle of 15 degrees with the \(x \)-axis.
Reflections

To reflect \mathbf{x} across the line through the origin that makes angle θ with the x-axis:

$$Ref_\theta(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Example: find the reflection of the vector $[2, 4]$ across the line through the origin that makes an angle of 15 degrees with the x-axis.

$$\begin{bmatrix} \cos(2(\pi/12)) & \sin(2(\pi/12)) \\ \sin(2(\pi/12)) & -\cos(2(\pi/12)) \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} \cos(\pi/6) & \sin(\pi/6) \\ \sin(\pi/6) & -\cos(\pi/6) \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} \sqrt{3} + 2 \\ 1 - 2\sqrt{3} \end{bmatrix} \approx \begin{bmatrix} 3.7 \\ -2.5 \end{bmatrix}$$
Reflections

To reflect \mathbf{x} across the line through the origin that makes angle θ with the x-axis:

$$
\text{Ref}_\theta(\mathbf{x}) = \begin{bmatrix}
\cos(2\theta) & \sin(2\theta) \\
\sin(2\theta) & -\cos(2\theta)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
$$

What happens when we do two reflections?
Reflections

To reflect \mathbf{x} across the line through the origin that makes angle θ with the x-axis:

$$Ref_\theta(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} \cos(2\theta) \cos(2\phi) + \sin(2\theta) \sin(2\phi) & \cos(2\theta) \sin(2\phi) - \sin(2\theta) \cos(2\phi) \\ \sin(2\theta) \cos(2\phi) - \cos(2\theta) \sin(2\phi) & \sin(2\theta) \sin(2\phi) + \cos(2\theta) \cos(2\phi) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\ \sin(2(\theta - \phi)) & \cos(2(\theta - \phi)) \end{bmatrix} = Rot_{2(\theta-\phi)}$$
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:
- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of $15°$ with the x-axis, then
- reflect across a line making an angle of $135°$ with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- Reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:
- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- Reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- reflect across a line making an angle of 135° with the x-axis.
Two Reflections gives a Rotation

Consider:

- Reflect across a line making an angle of 15° with the x-axis, then
- Reflect across a line making an angle of 135° with the x-axis.
Reflections

To reflect \(x \) across the line through the origin that makes angle \(\theta \) with the \(x \)-axis:

\[
Ref_\theta(x) = \begin{bmatrix}
\cos(2\theta) & \sin(2\theta) \\
\sin(2\theta) & -\cos(2\theta)
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

What happens when we do two reflections?

\[
\begin{bmatrix}
\cos(2\theta) & \sin(2\theta) \\
\sin(2\theta) & -\cos(2\theta)
\end{bmatrix}
\begin{bmatrix}
\cos(2\phi) & \sin(2\phi) \\
\sin(2\phi) & -\cos(2\phi)
\end{bmatrix}
= \begin{bmatrix}
\cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\cos(2\phi) \\
\sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi)
\end{bmatrix}
= \begin{bmatrix}
\cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\
\sin(2(\theta - \phi)) & \cos(2(\theta - \phi))
\end{bmatrix}
= Rot_{2(\theta-\phi)}
\]

Are reflections commutative?

No (but almost)
Reflections

To reflect \mathbf{x} across the line through the origin that makes angle θ with the x-axis:

$$
\text{Ref}_\theta(\mathbf{x}) = \begin{bmatrix}
\cos(2\theta) & \sin(2\theta) \\
\sin(2\theta) & -\cos(2\theta)
\end{bmatrix}
\begin{bmatrix}
\mathbf{x}_1 \\
\mathbf{x}_2
\end{bmatrix}
$$

What happens when we do two reflections?

$$
\begin{bmatrix}
\cos(2\theta) & \sin(2\theta) \\
\sin(2\theta) & -\cos(2\theta)
\end{bmatrix}
\begin{bmatrix}
\cos(2\phi) & \sin(2\phi) \\
\sin(2\phi) & -\cos(2\phi)
\end{bmatrix}
\begin{bmatrix}
\cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\
\sin(2(\theta - \phi)) & \cos(2(\theta - \phi))
\end{bmatrix}
= \text{Rot}_{2(\theta-\phi)}
$$

Are reflections commutative? No (but almost)
Reflections

To reflect \mathbf{x} across the line through the origin that makes angle θ with the x-axis:

$$\text{Ref}_\theta(\mathbf{x}) = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

What happens when we do two reflections?

$$\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} \cos(2\phi) & \sin(2\phi) \\ \sin(2\phi) & -\cos(2\phi) \end{bmatrix} = \begin{bmatrix} \cos(2\theta)\cos(2\phi) + \sin(2\theta)\sin(2\phi) & \cos(2\theta)\sin(2\phi) - \sin(2\theta)\cos(2\phi) \\ \sin(2\theta)\cos(2\phi) - \cos(2\theta)\sin(2\phi) & \sin(2\theta)\sin(2\phi) + \cos(2\theta)\cos(2\phi) \end{bmatrix}$$

$$= \begin{bmatrix} \cos(2(\theta - \phi)) & -\sin(2(\theta - \phi)) \\ \sin(2(\theta - \phi)) & \cos(2(\theta - \phi)) \end{bmatrix} = \text{Rot}_{2(\theta - \phi)}$$

Are reflections commutative? No (but almost)

Are reflections commutative with rotations?
Reflections and Rotations

Are reflections commutative with rotations?

Try the following with a cell phone or book:
1. Rotate 90 degrees clockwise
2. Flip 180 degrees vertically

Alternately:
1. Flip 180 degrees vertically
2. Rotate 90 degrees clockwise
Reflections and Rotations

Are reflections commutative with rotations?

Try the following with a cell phone or book:
1. Rotate 90 degrees clockwise
2. Flip 180 degrees vertically

Alternately:
1. Flip 180 degrees vertically
2. Rotate 90 degrees clockwise

Nope.
Summary: Examples of Linear Transformations

To compute the rotation of the vector \mathbf{x} by θ, multiply \mathbf{x} by the matrix

$$
Rot_\theta = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\end{bmatrix}
$$
Summary: Examples of Linear Transformations

To compute the rotation of the vector \(x \) by \(\theta \), multiply \(x \) by the matrix

\[
Rot_\theta = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

To compute the projection of the vector \(x \) onto the vector \([a_1, a_2] \), multiply \(x \) by the matrix

\[
proj_{[a_1, a_2]} = \begin{bmatrix}
a_1^2 & a_1 a_2 \\
a_1^2 + a_2^2 & a_1^2 + a_2^2 \\
a_1 a_2 & a_2^2 \\
a_1^2 + a_2^2 & a_1^2 + a_2^2
\end{bmatrix}
\]
Summary: Examples of Linear Transformations

To compute the rotation of the vector x by θ, multiply x by the matrix

$$\text{Rot}_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

To compute the projection of the vector x onto the vector $[a_1, a_2]$, multiply x by the matrix

$$\text{proj}_{[a_1, a_2]} = \begin{bmatrix} \frac{a_1^2}{a_1^2 + a_2^2} & \frac{a_1 a_2}{a_1^2 + a_2^2} \\ \frac{a_1 a_2}{a_1^2 + a_2^2} & \frac{a_2^2}{a_1^2 + a_2^2} \end{bmatrix}$$

To compute the reflection of the vector x across the line through the origin that makes an angle of ϕ with the x-axis, multiply x by the matrix

$$\text{Ref}_\phi = \begin{bmatrix} \cos 2\phi & \sin 2\phi \\ \sin 2\phi & -\cos 2\phi \end{bmatrix}$$
Summary: Examples of Linear Transformations

To compute the rotation of the vector \(\mathbf{x} \) by \(\theta \), multiply \(\mathbf{x} \) by the matrix

\[
\text{Rot}_\theta = \begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\]

To compute the projection of the vector \(\mathbf{x} \) onto the vector \([a_1, a_2] \), multiply \(\mathbf{x} \) by the matrix

\[
\text{proj}_{[a_1, a_2]} = \begin{bmatrix}
a_1^2 & a_1 a_2 \\
\frac{a_1^2}{a_1^2+a_2^2} & \frac{a_1 a_2}{a_1^2+a_2^2} \\
\frac{a_2^2}{a_1^2+a_2^2} & \frac{a_2^2}{a_1^2+a_2^2}
\end{bmatrix}
\]

To compute the reflection of the vector \(\mathbf{x} \) across the line through the origin that makes an angle of \(\phi \) with the \(x \)-axis, multiply \(\mathbf{x} \) by the matrix

\[
\text{Ref}_\phi = \begin{bmatrix}
\cos 2\phi & \sin 2\phi \\
\sin 2\phi & -\cos 2\phi
\end{bmatrix}
\]

Which transformations are equivalent to matrix multiplication?
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T([1,0])$ and $T([0,1])$.
- Since $\{[1,0],[0,1]\}$ is a basis of \mathbb{R}^2, every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $[9,14] = 9[1,0] + 14[0,1]$.
- Since T is linear, $T([9,14]) = T(9[1,0] + 14[0,1]) = 9T([1,0]) + 14T([0,1])$.
- In general, $T([x,y]) = T(x[1,0] + y[0,1]) = xT([1,0]) + yT([0,1])$.

4.3: Application: Random Walks

4.3: The Transpose
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$ and $T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$
Which transformations are equivalent to matrix multiplication?

Suppose \(T \) is a transformation from \(\mathbb{R}^2 \) to \(\mathbb{R}^4 \).

- Suppose we know \(T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \) and \(T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) \)

- Since \(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \) is a basis of \(\mathbb{R}^2 \), every vector in \(\mathbb{R}^2 \) can be written as a linear combination of these two vectors.
Which transformations are equivalent to matrix multiplication?

Suppose \(T \) is a transformation from \(\mathbb{R}^2 \) to \(\mathbb{R}^4 \).

- Suppose we know \(T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) \) and \(T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) \).

- Since \(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \) is a basis of \(\mathbb{R}^2 \), every vector in \(\mathbb{R}^2 \) can be written as a linear combination of these two vectors. For example, \(\begin{bmatrix} 9 \\ 14 \end{bmatrix} = 9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \).
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$ and $T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$

- Since $\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$ is a basis of \mathbb{R}^2, every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors.

 For example, $\begin{bmatrix} 9 \\ 14 \end{bmatrix} = 9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Since T is linear,

 $T\left(\begin{bmatrix} 9 \\ 14 \end{bmatrix}\right)$
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$ and $T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$

- Since $\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$ is a basis of \mathbb{R}^2, every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors.

For example, $\begin{bmatrix} 9 \\ 14 \end{bmatrix} = 9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Since T is linear, $T \left(\begin{bmatrix} 9 \\ 14 \end{bmatrix}\right) = T \left(9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$ and $T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$

- Since $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2, every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors.
 For example, $\begin{bmatrix} 9 \\ 14 \end{bmatrix} = 9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Since T is linear, $T \left(\begin{bmatrix} 9 \\ 14 \end{bmatrix} \right) = T \left(9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = 9T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) + 14T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$ and $T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$.

- Since $\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$ is a basis of \mathbb{R}^2, every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9 \\ 14 \end{bmatrix} = 9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

- Since T is linear, $T\left(\begin{bmatrix} 9 \\ 14 \end{bmatrix}\right) = T\left(9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = 9T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + 14T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$.

- In general, $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)$.
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right)$ and $T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$

- Since $\left\{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right\}$ is a basis of \mathbb{R}^2, every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9 \\ 14 \end{bmatrix} = 9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Since T is linear,
 \[
 T\left(\begin{bmatrix} 9 \\ 14 \end{bmatrix}\right) = T\left(9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = 9 T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + 14 T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)
 \]

- In general,
 \[
 T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = T\left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)
 \]
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $T \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Since $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^2, every vector in \mathbb{R}^2 can be written as a linear combination of these two vectors. For example, $\begin{bmatrix} 9 \\ 14 \end{bmatrix} = 9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- Since T is linear, $T \begin{bmatrix} 9 \\ 14 \end{bmatrix} = T \left(9 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = 9 T \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 14 T \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

- In general, $T \begin{bmatrix} x \\ y \end{bmatrix} = T \left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = x T \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y T \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) =$ and $T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) =$
Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and $T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$
Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and $T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$.

-

$$T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 1 5 \\ 2 5 \\ 3 5 \\ 4 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and $T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$

- $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = T\left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = xT\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + yT\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and $T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$.

-

 $T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = T \left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = x T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) + y T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$

 $= x \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + y \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$
Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and $T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$.

- \[
T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = T\left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = xT\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + yT\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)
\]

\[
= x\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + y\begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 1x + 5y \\ 2x + 5y \\ 3x + 5y \\ 4x + 5y \end{bmatrix}
\]
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

• Suppose we know $T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and $T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$

• $T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = T \left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) = x T \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) + y T \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$

$$= x \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + y \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 1x + 5y \\ 2x + 5y \\ 3x + 5y \\ 4x + 5y \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 2 & 5 \\ 3 & 5 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
Which transformations are equivalent to matrix multiplication?

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^4.

- Suppose we know $T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and $T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix}$

- $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = T\left(x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = xT\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) + yT\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right)$

 $$= x\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + y\begin{bmatrix} 5 \\ 5 \\ 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 1x + 5y \\ 2x + 5y \\ 3x + 5y \\ 4x + 5y \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- So: $T(x)$ can be computed as a matrix multiplication,

$$T(x) = \begin{bmatrix} T\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) & T\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) \end{bmatrix} x$$
Which transformations are equivalent to matrix multiplication?

Theorem

Every linear transformation T that takes a vector as an input, and gives a vector as an output, is equivalent to a matrix multiplication.
Which transformations are equivalent to matrix multiplication?

Theorem
Every linear transformation T that takes a vector as an input, and gives a vector as an output, is equivalent to a matrix multiplication.

Extended Theorem
Suppose T is a linear transformation that transforms vectors of \mathbb{R}^n into vectors of \mathbb{R}^m. If e_1, \ldots, e_n is the standard basis of \mathbb{R}^n, then:

$$T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{bmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

That is: $e_1 = [1, 0, \ldots, 0]$, $e_2 = [0, 1, 0, \ldots, 0]$, etc.
Geometric interpretation of an n-by-m matrix: linear transformation from \mathbb{R}^m to \mathbb{R}^n.

A matrix can be viewed as a particular kind of function.
General Linear Transformations

\[
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]
General Linear Transformations

\[
\begin{aligned}
\{ & \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\
& \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} \\
\end{aligned}
\]

\[
T \left(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad T \left(\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}, \quad T \left(\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right) = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}
\]
General Linear Transformations

\[
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}, \quad
\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix}, \quad
\begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}
\]

\[
T \left(\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix} \right) = \begin{pmatrix} 1 \end{pmatrix}, \quad
T \left(\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix} \right) = \begin{pmatrix} 2 \end{pmatrix}, \quad
T \left(\begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix} \right) = \begin{pmatrix} 3 \end{pmatrix}
\]

\[
T \left(\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \right) = x \begin{pmatrix} 1 \end{pmatrix} + y \begin{pmatrix} 2 \end{pmatrix} + z \begin{pmatrix} 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} x \\
y \\
z \end{pmatrix}
\]
General Linear Transformations

\[T : \mathbb{R}^n \rightarrow \mathbb{R}^m \quad \text{linear} \]
General Linear Transformations

\[T : \mathbb{R}^n \to \mathbb{R}^m \text{ linear} \]

Standard basis of \(\mathbb{R}^n \):

\[
\begin{align*}
\{ e_1 &= \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \\
e_2 &= \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \\
&\cdots, \\
e_n &= \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \}
\end{align*}
\]
General Linear Transformations

\[T : \mathbb{R}^n \rightarrow \mathbb{R}^m \quad \text{linear} \]

Standard basis of \(\mathbb{R}^n \):

\[
\left\{
\begin{array}{c}
 e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \\
 e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \\
 \ldots, \\
 e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}
\end{array}
\right.
\]

\[
T \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix}
 T(e_1) & T(e_2) & \cdots & T(e_n)
\end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
\]
Examples

Suppose a linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 has the following properties:

$T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

$T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \end{pmatrix}$

Give a matrix A so that $T(x) = Ax$ for every vector x in \mathbb{R}^2.
Examples

Suppose a linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 has the following properties:

\[
T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix},
\]

\[
T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \end{pmatrix}.
\]

Give a matrix A so that $T(x) = Ax$ for every vector x in \mathbb{R}^2.

Suppose a linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 has the following properties:

\[
T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix},
\]

\[
T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \end{pmatrix}.
\]

Give a matrix A so that $T(x) = Ax$ for every vector x in \mathbb{R}^2.
Examples

Suppose T is a transformation from \mathbb{R}^2 to \mathbb{R}^3, where $T(x) = Ax$ for the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Which vector $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ has $T(x) = \begin{bmatrix} 4 \\ 10 \\ 16 \end{bmatrix}$?

Which vector $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ has $T(y) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$?
Examples

Suppose \(T \) is a transformation from \(\mathbb{R}^2 \) to \(\mathbb{R}^3 \), where \(T(x) = Ax \) for the matrix

\[
A = \begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\]

Which vector \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \) has \(T(x) = \begin{bmatrix} 4 \\ 10 \\ 16 \end{bmatrix} \)?

Which vector \(y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \) has \(T(y) = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \)?

Characterize vectors that can come out of \(T \).
Random Walks: Another Use of Matrix Multiplication

- n states
- Fixed probability $p_{i,j}$ of moving to state i if you are in state j.

Examples: https://en.wikipedia.org/wiki/Random_walk
model Brownian Motion (Wiener process)
genetic drift
stock markets
use sampling to estimate properties of a large system
Random Walks: Another Use of Matrix Multiplication

- n states
- Fixed probability $p_{i,j}$ of moving to state i if you are in state j.

Examples:
model Brownian Motion (Wiener process)
Random Walks: Another Use of Matrix Multiplication

- n states
- Fixed probability $p_{i,j}$ of moving to state i if you are in state j.

Examples:
model Brownian Motion (Wiener process)
genetic drift
Random Walks: Another Use of Matrix Multiplication

- n states
- Fixed probability $p_{i,j}$ of moving to state i if you are in state j.

Examples:
model Brownian Motion (Wiener process)
genetic drift
stock markets
Random Walks: Another Use of Matrix Multiplication

- n states
- Fixed probability $p_{i,j}$ of moving to state i if you are in state j.

Examples:
- model Brownian Motion (Wiener process)
- genetic drift
- stock markets
- use sampling to estimate properties of a large system
Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Fishing: By Mimooh (Own work), via Wikimedia Commons
Playing: By Silvermoonlight217
Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.
Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

x_0: initial state of penguin. For example: $[1, 0, 0]$ if we know the penguin is sleeping.
Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

x_0: initial state of penguin. For example: $[1, 0, 0]$ if we know the penguin is sleeping.

x_1:
Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Let \(x_n \) be the vector describing the probability that the penguin is sleeping/fishing/playing after \(n \) hours.

\(x_0 \): initial state of penguin. For example: \([1, 0, 0]\) if we know the penguin is sleeping.

\(x_1 \): \([.5, .25, .25]\)
An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

x_0: initial state of penguin. For example: $[1, 0, 0]$ if we know the penguin is sleeping.

x_1: $[.5, .25, .25]$
Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from to</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

x_0: initial state of penguin. For example: [1, 0, 0] if we know the penguin is sleeping.

x_1: [.5, .25, .25]

x_2: [.25 .3 .3] [.25]
Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

x_0: initial state of penguin. For example: $[1, 0, 0]$ if we know the penguin is sleeping.

x_1: $[.5, .25, .25]$

$$x_2: \begin{bmatrix} .5 & .7 & .4 \\ .25 & 0 & .3 \\ .25 & .3 & .3 \end{bmatrix} \begin{bmatrix} .5 \\ .25 \\ .25 \end{bmatrix} = P x_1 =$$
Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from to</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

x_0: initial state of penguin. For example: $[1, 0, 0]$ if we know the penguin is sleeping.

x_1: $[.5, .25, .25]$

$$x_2: \begin{bmatrix} .25 & 0 & .3 \\ .25 & .3 & .3 \end{bmatrix} \begin{bmatrix} .5 \\ .5 \end{bmatrix} = Px_1 = P(Px_0)$$
Random Walks: Another Use of Matrix Multiplication

An ideal penguin has three states: sleeping, fishing, and playing. It is observed once per hour.

<table>
<thead>
<tr>
<th>from to</th>
<th>sleeping</th>
<th>fishing</th>
<th>playing</th>
</tr>
</thead>
<tbody>
<tr>
<td>sleeping</td>
<td>.5</td>
<td>.7</td>
<td>.4</td>
</tr>
<tr>
<td>fishing</td>
<td>.25</td>
<td>0</td>
<td>.3</td>
</tr>
<tr>
<td>playing</td>
<td>.25</td>
<td>.3</td>
<td>.3</td>
</tr>
</tbody>
</table>

Let x_n be the vector describing the probability that the penguin is sleeping/fishing/playing after n hours.

x_0: initial state of penguin. For example: $[1, 0, 0]$ if we know the penguin is sleeping.

x_1: $[.5, .25, .25]$

\[
x_2: \begin{bmatrix} .5 & .7 & .4 \\ .25 & 0 & .3 \\ .25 & .3 & .3 \end{bmatrix} \begin{bmatrix} .5 \\ .25 \end{bmatrix} = Px_1 = P(Px_0) = P^2x_0
\]
Random Walks

In general:
- n states
- $p_{i,j}$ probability of moving to state i if you are in state j; $P = [p_{i,j}]$
Random Walks

In general:
• n states
• $p_{i,j}$ probability of moving to state i if you are in state j; $P = [p_{i,j}]$

Given x_n:
$$x_{n+1} = Px_n = P^{n+1}x_0$$
Random Walks

In general:
• n states
• $p_{i,j}$ probability of moving to state i if you are in state j; $P = [p_{i,j}]$

Given x_n:
$x_{n+1} = Px_n = P^{n+1}x_0$

P: "transition matrix"
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th>from</th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td>Left ground</td>
<td>Rope</td>
<td>Right ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ground</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your chances of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th></th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ground</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rope</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ground</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your chances of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th>from to</th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ground</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rope</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ground</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th>from \ to</th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ground</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rope</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ground</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your chances of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th></th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>from to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left ground</td>
<td>1</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Rope</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right ground</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th>from to</th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ground</td>
<td>1</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Rope</td>
<td>0</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Right ground</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your changes of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th>from to</th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ground</td>
<td>1</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Rope</td>
<td>0</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Right ground</td>
<td>0</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your chances of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th>from to</th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ground</td>
<td>1</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>Rope</td>
<td>0</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Right ground</td>
<td>0</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your chances of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th>from</th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left ground</td>
<td>1</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>Rope</td>
<td>0</td>
<td>0.94</td>
<td>0</td>
</tr>
<tr>
<td>Right ground</td>
<td>0</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your chances of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th>from to</th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ground</td>
<td>1</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>Rope</td>
<td>0</td>
<td>0.94</td>
<td>0</td>
</tr>
<tr>
<td>Right ground</td>
<td>0</td>
<td>0.01</td>
<td>1</td>
</tr>
</tbody>
</table>
Random Walk Example: Falling Down

Suppose you are learning to walk on a tight rope, but you are not very good yet. With every step you take, your chances of falling to the right are 1%, and your chances of falling to the left are 5%, because of an old math-related injury that causes you to lean left when you’re scared. When you fall, you stay on the ground.

<table>
<thead>
<tr>
<th>from</th>
<th>Left ground</th>
<th>Rope</th>
<th>Right ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left ground</td>
<td>1</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>Rope</td>
<td>0</td>
<td>0.94</td>
<td>0</td>
</tr>
<tr>
<td>Right ground</td>
<td>0</td>
<td>0.01</td>
<td>1</td>
</tr>
</tbody>
</table>

Where are you after 100 steps?
Random Walk Example: Error Messages

Suppose you are using a buggy program. You start up without a problem.

- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01.

- If you have already encountered exactly one error message, your odds of encountering a second on your next click are 0.05.

- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1.

- After the third error message, you uninstall the program, and never use it again.
Random Walk Example: Error Messages

Suppose you are using a buggy program. You start up without a problem.

- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01.
- If you have already encountered exactly one error message, your odds of encountering a second on your next click are 0.05.
- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1.
- After the third error message, you uninstall the program, and never use it again.

Possible states: no errors; one error; two errors; three errors; uninstalled.
Random Walk Example

Suppose you are using a buggy program. You start up without a problem.

- If you have never encountered an error message, your odds of encountering an error message with your next click are 0.01.
- If you have already encountered exactly one error message, your odds of encountering a second on your next click are 0.05.
- If you have encountered two error messages, the odds of encountering a third on your next click are 0.1.
- After the third error message, you uninstall the program.

Possible states: no errors; one error; two errors; three errors; uninstalled.

<table>
<thead>
<tr>
<th>from</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.99</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>.01</td>
<td>.95</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>.05</td>
<td>.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Harder Questions involving Random Walks

- For which value of n does x_n have a certain characteristic?
Harder Questions involving Random Walks

- For which value of n does x_n have a certain characteristic?
- What is $\lim_{n \to \infty} x_n$?
Harder Questions involving Random Walks

- For which value of n does x_n have a certain characteristic?
- What is $\lim_{n \to \infty} x_n$?

Note: $\lim_{n \to \infty} x_n = \lim_{n \to \infty} P^n x_0$.

Application: Google!

Stay tuned for more Random Walks excitement.
Harder Questions involving Random Walks

- For which value of n does x_n have a certain characteristic?
- What is $\lim_{n \to \infty} x_n$?

 Note: $\lim_{n \to \infty} x_n = \lim_{n \to \infty} P^n x_0$.
- Does $\lim_{n \to \infty} x_n$ depend on x_0?
Harder Questions involving Random Walks

- For which value of n does x_n have a certain characteristic?
- What is $\lim_{n \to \infty} x_n$?
 Note: $\lim_{n \to \infty} x_n = \lim_{n \to \infty} P^n x_0$.
- Does $\lim_{n \to \infty} x_n$ depend on x_0?

Application: Google!
Harder Questions involving Random Walks

- For which value of n does x_n have a certain characteristic?
- What is $\lim_{n \to \infty} x_n$?
 Note: $\lim_{n \to \infty} x_n = \lim_{n \to \infty} P^n x_0$.
- Does $\lim_{n \to \infty} x_n$ depend on x_0?

Application: Google!

Stay tuned for more Random Walks excitement
Transpose

Transpose: rows \leftrightarrow columns.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \quad A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
Transpose: rows ↔ columns.

\[A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \]

\[A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \]

\[B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} \]

\[B^T = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix} \]

Transpose

Transpose: rows ↔ columns.

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}
\]

\[
A^T = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
\begin{bmatrix}
4 \\
5 \\
6
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{bmatrix}
\]

\[
B^T = \begin{bmatrix}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{bmatrix}
\]

\[
AB = \begin{bmatrix}
6 & 12 & 18 \\
15 & 30 & 45
\end{bmatrix}
\]

\[
BA = DNE
\]
Transpose

Transpose: rows \leftrightarrow columns.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

$$B^T = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{bmatrix}$$

$$AB = \begin{bmatrix} 6 & 12 & 18 \\ 15 & 30 & 45 \end{bmatrix}$$

$$BA = DNE$$

$$B^T A^T = \begin{bmatrix} 6 & 15 \\ 12 & 30 \\ 18 & 45 \end{bmatrix}$$

$$AB = (B^T A^T)^T$$
Previous example of noncommutativity of matrix multiplication:

\[
\begin{bmatrix}
1 & 2 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
7 & 5 \\
3 & 0
\end{bmatrix}
=
\begin{bmatrix}
13 & 5 \\
0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
7 & 5 \\
3 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
0 & 0
\end{bmatrix}
=
\begin{bmatrix}
7 & 14 \\
3 & 6
\end{bmatrix}
\]
Previous example of noncommutativity of matrix multiplication:

\[
\begin{bmatrix}
1 & 2 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
7 & 5 \\
3 & 0
\end{bmatrix}
=
\begin{bmatrix}
13 & 5 \\
0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
7 & 5 \\
3 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
0 & 0
\end{bmatrix}
=
\begin{bmatrix}
7 & 14 \\
3 & 6
\end{bmatrix}
\]

\[
\begin{bmatrix}
7 & 3 \\
5 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
2 & 0
\end{bmatrix}
=
\begin{bmatrix}
13 & 0 \\
5 & 0
\end{bmatrix}
\]
Transpose and Dot Product

\[y \cdot (Ax) = (A^T y) \cdot x \]

where \(A \) is an \(m \)-by-\(n \) matrix, \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^m \).
Transpose and Dot Product

\[y \cdot (Ax) = (A^T y) \cdot x \]

where \(A \) is an \(m \)-by-\(n \) matrix, \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^m \).

\[
\begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix} \cdot \left(\begin{pmatrix}
1 & 0 \\
0 & 1 \\
-1 & 1
\end{pmatrix} \begin{pmatrix}
8 \\
9
\end{pmatrix} \right) = \begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix} \cdot \begin{pmatrix}
8 \\
9
\end{pmatrix} = 8 + 18 + 3 = 29
\]

\[
\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 1
\end{pmatrix} \begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix} \cdot \begin{pmatrix}
8 \\
9
\end{pmatrix} = \begin{pmatrix}
-2 \\
5
\end{pmatrix} \cdot \begin{pmatrix}
8 \\
9
\end{pmatrix} = -16 + 45 = 29
\]
Summary

- Transpose swaps rows and columns
- $AB = (B^T A^T)^T$
- $y \cdot (Ax) = (A^T y) \cdot x$

- $(A^T)^T = A$
- $\left(\left(\left((A^T)^T \right)^T \right)^T \right)^T = A$
- $(AB)x = (x^T B^T)^T A$
- $y \cdot (Ax) = x \cdot (A^T y)$
True or False?

Summary

- Transpose swaps rows and columns
- \(AB = (B^T A^T)^T \)
- \(y \cdot (Ax) = (A^T y) \cdot x \)

- \((A^T)^T = A \) \(\text{true} \)

- \(\left(\left(\left((A^T)^T \right)^T \right)^T \right)^T = A \)

- \((AB)x = (x^T B^T)^T A \)

- \(y \cdot (Ax) = x \cdot (A^T y) \)
True or False?

Summary

• Transpose swaps rows and columns

• $AB = (B^T A^T)^T$

• $y \cdot (Ax) = (A^T y) \cdot x$

• $(A^T)^T = A$ \hspace{1cm} \text{true}

• $\left(\left(\left((A^T)^T \right)^T \right)^T \right)^T = A$ \hspace{1cm} \text{false}

• $(AB)x = (x^T B^T)^T A$

• $y \cdot (Ax) = x \cdot (A^T y)$
Summary

• Transpose swaps rows and columns
• $AB = (B^T A^T)^T$
• $y \cdot (Ax) = (A^T y) \cdot x$

- $(A^T)^T = A$ \hspace{1cm} true
- $\left(\left(\left((A^T)^T \right)^T \right)^T \right)^T = A$ \hspace{1cm} false
- $(AB)x = (x^T B^T)^T A$ \hspace{1cm} false
- $y \cdot (Ax) = x \cdot (A^T y)$
Summary

- Transpose swaps rows and columns
- \(AB = (B^T A^T)^T \)
- \(y \cdot (Ax) = (A^T y) \cdot x \)

- \((A^T)^T = A \) \quad \text{true}
- \(
\left(\left(\left(\left((A^T)^T \right)^T \right)^T \right)^T \right)^T = A \) \quad \text{false}
- \((AB)x = (x^T B^T)^T A \) \quad \text{false}
- \(y \cdot (Ax) = x \cdot (A^T y) \) \quad \text{true}