Week 6: Matrix Multiplication and Linear Transformation

Course Notes: 4.1, 4.2

Goals: Learn the mechanics of matrix multiplication and linear transformation, and use matrix multiplication to describe linear transformations.

Matrix Anatomy

A matrix with 3 rows and 4 columns is a 3 by 4 matrix.

We often write $A = [a_{i,j}]$, where $a_{i,j}$ refers to the particular entry of A in row i, column j.

Addition and Scalar Multiplication

Addition and scalar multiplication work the way you want them to.

$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{bmatrix} \quad B = \begin{bmatrix} 2 & 1 & 5 & -1 \\ 8 & 6 & 6 & 2 \\ 3 & -1 & 2 & -3 \end{bmatrix}$
You’re comparing cell phone plans. For some number of plans and for some number of people, you have information about costs and usage of three services: texts, minutes talking, and GB of data.

You want to know, for each person and plan, what the cost will be.

Input: plans×services and people×services
Output: plans×people

Matrix Multiplication

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 4 & 6
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 0 \\
2 & 1 \\
0 & 3
\end{bmatrix}
= \begin{bmatrix}
5 & 11 \\
10 & 22
\end{bmatrix}
\]

In the product, the entry in the ith row and jth column comes from dotting the ith row and jth column of the matrices being multiplied.

\[
\begin{align*}
[1, 2, 3] \cdot [1, 2, 0] &= 5 \\
[1, 2, 3] \cdot [0, 1, 3] &= 11 \\
[2, 4, 6] \cdot [1, 2, 0] &= 10 \\
[2, 4, 6] \cdot [0, 1, 3] &= 22
\end{align*}
\]

Another Example

\[
\begin{bmatrix}
0 & 1 & 3 \\
1 & 0 & 2 \\
1 & 1 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
2 & 3 \\
3 & 0 \\
1 & 2
\end{bmatrix}
= \begin{bmatrix}
\end{bmatrix}
\]
Another Example

\[
\begin{bmatrix}
2 & 5 \\
0 & 1 \\
1 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 0 & 3 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}
= \]

Wait but... why

\[
\begin{bmatrix}
x_1 + 2x_2 + 3x_3 + 4x_4 \\
5x_1 + 6x_2 + 7x_3 + 8x_4
\end{bmatrix}
= \begin{bmatrix} 0 \\ 2 \end{bmatrix}
\]

\[
A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}, \quad x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 2 \end{bmatrix}
\]

Dimensions

\[
\begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix}
= \begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix}
\]

We can only take the dot product of two vectors that have the same length.

If \(A \) is an \(m \)-by-\(n \) matrix, and \(B \) is an \(r \)-by-\(c \) matrix, then \(AB \) is only defined if \(n = r \). If \(n = r \), then \(AB \) is an \(m \)-by-\(c \) matrix.

Can you always multiply a matrix by itself?
Properties of Matrix Multiplication

One important property DOESN’T hold.

\[
\begin{bmatrix}
1 & 2 \\
0 & 0 \\
7 & 5 \\
3 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
0 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 2 \\
0 & 0 \\
7 & 5 \\
3 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
0 & 0
\end{bmatrix}
= \begin{bmatrix}
0 & 0 \\
1 & 2
\end{bmatrix}
\]

Properties of Matrix Algebra

The other properties hold as you would like. (Page 128, notes.)
1. \(A + B = B + A \)
2. \(A + (B + C) = (A + B) + C \)
3. \(s(A + B) = sA + sB \)
4. \((s + t)A = sA + tA \)
5. \((st)A = s(tA) \)
6. \(1A = A \)
7. \(A + 0 = A \) (where \(0 \) is the matrix of all zeros)
8. \(A - A = A + (-1)A = 0 \)
9. \(A(B + C) = AB + AC \)
10. \((A + B)C = AC + BC \)
11. \(A(BC) = (AB)C \)
12. \(s(AB) = (sA)B = A(sB) \)

Examples

Simplify the following expressions.

1) \[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
8 & 9 & 8 \\
9 & 8 & 9 \\
8 & 9 & 8
\end{bmatrix}
+
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
-8 & -9 & -8 \\
-8 & -9 & -8 \\
-8 & -9 & -8
\end{bmatrix}
\]

2) \[
\begin{bmatrix}
33 & 44 \\
55 & 66
\end{bmatrix}
\begin{bmatrix}
5 & 1 \\
7 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
1 & 1
\end{bmatrix}
\]

3) \[
2.8 \begin{bmatrix}
15 & 0 & 38 \\
9 & 10 & 11 \\
8 & 7 & 6
\end{bmatrix}
+ 5.6 \begin{bmatrix}
-2.5 & 0 & 1 \\
0.5 & 0 & -0.5 \\
1 & 1.5 & 2
\end{bmatrix}
\]
Suppose A is an m-by-n matrix, and B is an r-by-c matrix.

If we want to multiply A and B, what has to be true about m, n, r, and c?

If we want to add A and B, what has to be true about m, n, r, and c?

If we want to compute $(A + B)A$, what has to be true about m, n, r, and c?

\[f(x) = x^2 \]
\[f(2 + 3) = 25 \quad f(2) + f(3) = 4 + 9 = 13 \]
\[f(2 + 3) = 36 \quad 2f(3) = 2 \cdot 9 = 18 \]

\[g(x) = 5x \]
\[g(2 + 3) = 25 \quad g(2) + g(3) = 10 + 15 = 25 \]
\[g(2 + 3) = 30 \quad 2g(3) = 2 \cdot 15 = 30 \]

\[g(x + y) = 5(x + y) = 5x + 5y = g(x) + g(y) \]
\[g(xy) = 5(xy) = x(5y) = xg(y) \]
Linear Transformations

Definition
A transformation T is called linear if, for any x, y in the domain of T, and any scalar s,

$$T(x + y) = T(x) + T(y)$$

and

$$T(sx) = sT(x).$$

Is differentiation $T(f(x)) = \frac{d}{dx}[f(x)]$ (of functions whose derivatives exist everywhere) a linear transformation?

Let $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x + y \\ 2x \end{bmatrix}$. Is T a linear transformation?

Are the following linear transformations?

$$S\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} z \\ y \\ x \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$T(x) = |x|, \ x \in \mathbb{R}^2$$

$$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ -1 \\ y \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Is the transformation $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}$ linear?

If A is a matrix, then the transformation $T(x) = Ax$ of a vector x is linear.
Geometric Interpretation

We interpret a matrix geometrically as a function from some vectors to some other vectors. In particular, the function is a linear transformation, so it preserves addition and scalar multiplication.

If \(T(x) = Ax \) for some \(3 \times 5 \) matrix \(A \) (and a vector \(x \)), what are the domain and range of the function \(T \)?

Example

Let \(T(x) \) be the rotation of \(x \) by ninety degrees.

Rotation by a fixed angle is a linear transformation.

Computing a rotations of \(\phi \) radians (\(\phi \) fixed)
Computing Rotations

\[\begin{align*}
|v| \sin(\theta + \phi) & \\
|v| \sin \theta & \\
|v| \cos(\theta + \phi) \cos \theta & \\
\end{align*} \]

\[\mathbf{v} = [v_1, v_2]; \quad T(\mathbf{v}) = [x, y] \]

\[
\begin{align*}
x &= |v| \cos(\theta + \phi) \\
&= |v| (\cos \theta \cos \phi - \sin \phi \sin \theta) \\
&= v_1 \cos \phi - v_2 \sin \phi \\
y &= |v| \sin(\theta + \phi) \\
&= |v| (\sin \theta \cos \phi + \cos \theta \sin \phi) \\
&= v_1 \sin \phi + v_2 \cos \phi \\
\end{align*} \]

Rot \(\phi \)

\[
\begin{bmatrix}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{bmatrix}
\]

What matrix should you multiply \[\begin{bmatrix} 4 \\ 2 \end{bmatrix} \] by to rotate it 90 degrees \((\pi/2 \text{ radians})\)?

What matrix should you multiply \[\begin{bmatrix} 4 \\ 2 \end{bmatrix} \] by to rotate it 30 degrees \((\pi/6 \text{ radians})\)?

Are rotations commutative?

Let \(a \) be a vector in \(\mathbb{R}^2 \).

1. Rotate the vector \(a \) by \(\theta \) radians, then by \(\phi \) radians.
2. Rotate the vector \(a \) by \(\phi \) radians, then by \(\theta \) radians.

Will you always end up with the same thing?
Are rotations commutative?

Let \(a \) be a vector in \(\mathbb{R}^2 \).

1. Rotate the vector \(a \) by \(\theta \) radians, then by \(\phi \) radians.

2. Rotate the vector \(a \) by \(\phi \) radians, then by \(\theta \) radians.

Will you always end up with the same thing?

Will \(\text{Rot}_\phi (\text{Rot}_\theta a) = \text{Rot}_\theta (\text{Rot}_\phi a) \) for every \(\theta \), every \(\phi \), and every \(a \) in \(\mathbb{R}^2 \)?

In general, matrix multiplication is not commutative, but we don’t care about ALL matrices—only rotation matrices.