Week 5: Circuits

Course Notes: 3.5

Goals: Use linear algebra to determine voltage drops and branch currents.

Components in Resistor Networks

- 9V voltage source
- 3A current source (inductor at an instant)
- 6Ω resistor

\[V = IR \]
Course Notes: 3.5, Resistor Networks

$V = IR$

5A

0V

2Ω

10V

(voltage drop of 10 Volts across resistor)

Setup: Given: Resistance of resistors; voltage across voltage sources; current through current sources.
Find: currents through each resistor and each voltage source; voltage drops across each current source

Kirchhoff's Laws

1. The sum of voltage drops around any closed loops in the network must be zero.
2. For any node, current in equals current out

Notes

Notes

Notes

Notes
Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you’ll simply get a negative number for your current.
- We’re counting up voltage drops around a loop. A voltage DROP is high to low.

Branch current is the NET effect of the loop currents.

\[
i_1 \approx 0.2449, \quad i_2 \approx 0.1114, \quad i_3 \approx 0.1166
\]

Equations from previous slide:

\[\begin{align*}
\text{\(i_1\) loop:} & \quad -10 + i_1 + 25(i_2 - i_1) + 50(i_1 - i_3) = 0 \\
\text{\(i_2\) loop:} & \quad 25(i_2 - i_1) + 30i_2 + (i_2 - i_3) = 0 \\
\text{\(i_3\) loop:} & \quad 50(i_3 - i_1) + (i_3 - i_2) + 55i_3 = 0
\end{align*}\]

\[
\begin{align*}
76i_1 - 25i_2 - 50i_3 & = 10 \\
-25i_1 + 56i_2 - i_3 & = 0 \\
-50i_1 - i_2 + 106i_3 & = 0
\end{align*}
\]
Things to Keep in Mind

- Set up your loop currents in any direction (clockwise or counter-clockwise), then follow them around in that direction.
- If your actual flow is not in the direction you chose, you’ll simply get a negative number for your current.
- We’re counting up voltage drops around a loop. A voltage DROP is high to low.

Branch current is the NET effect of the loop currents.

Equations from Previous Slide:

\[\begin{align*}
\text{i}_1 \text{ loop:} & \quad -10 + 2(i_1 - i_2) + (i_1 - i_2) = 0 \\
\text{i}_2 \text{ loop:} & \quad 2i_2 + (i_2 - i_1) + 4(i_2 - i_3) = 0 \\
\text{i}_3 \text{ loop:} & \quad -10 + 4(i_3 - i_2) + 3(i_3 - i_4) = 0 \\
\text{i}_4 \text{ loop:} & \quad 5i_4 + 3(i_4 - i_3) + 2(i_4 - i_1) = 0
\end{align*} \]
Let E be the voltage drop across the current source.
Equations from previous slide:

Current Source: \(i_1 - i_2 = 5 \)
1. Loop: \(-10 + 3(i_1 - i_3) + 2(i_1 - i_2) = 0\)
2. Loop: \(2(i_2 - i_3) + E = 0\)
3. Loop: \(-E + 3(i_2 - i_3) + i_1 = 0\)

\[
\begin{align*}
0i_1 - i_2 + i_3 + 0E &= 5 \\
5i_1 - 2i_2 - 3i_3 + 0E &= 10 \\
-2i_1 + 2i_2 + 0i_3 + E &= 0 \\
-3i_1 + 0i_2 + 4i_3 - E &= 0
\end{align*}
\]

5A Current Source: \(i_3 - i_1 = 5 \)

8A Current Source: \(i_1 - i_3 = 8 \)
1. Loop: \(3i_1 + 2(i_1 - i_2) + E_1 = 0\)
2. Loop: \(2(i_2 - i_1) + 4i_2 - E_2 = 0\)
3. Loop: \(-E_1 + E_2 + 10 = 0\)

\[
\begin{align*}
-i_1 + 0i_2 + i_3 + 0E_1 + 0E_2 &= 5 \\
0i_1 + i_2 - i_3 + 0E_1 + 0E_2 &= 8 \\
5i_1 - 2i_2 + 0i_3 + E_1 + 0E_2 &= 0 \\
-2i_1 + 6i_2 + 0i_3 + 0E_1 - E_2 &= 0 \\
0i_1 + 0i_2 + 0i_3 - E_1 + E_2 &= -10
\end{align*}
\]

\(i_1 \approx -8.8571, \quad i_2 \approx 4.1429, \quad i_3 \approx -3.8571, \quad E_1 \approx 52.5714, \quad E_2 \approx 42.5714 \)
Equations from previous slide:

10A Current Source: $i_2 - i_1 = 10$

5A Current Source: $i_3 - i_2 = 5$

i_1 Loop: $20 + E_1 = 0$

i_2 Loop: $4i_2 + E_2 + 4i_2 - E_1 = 0$

i_3 Loop: $2i_3 - E_2 = 0$

\[-i_1 + i_2 + 0i_3 + 0E_1 + 0E_2 = 10 \]
\[0i_1 - i_2 + i_3 + 0E_1 + 0E_2 = 5 \]
\[0i_1 + 0i_2 + 0i_3 + E_1 + 0E_2 = -20 \]
\[0i_1 + 8i_2 + 0i_3 - E_1 + E_2 = 0 \]
\[0i_1 + 0i_2 + 2i_3 + 0E_1 - E_2 = 0 \]
Find all branch currents.

What resistance should the top resistor have, if you want each wire touching the centre to have current 5A?
What voltage should the voltage source have, in order for there to be no current across it?