Properties of a Taylor Polynomial

Constant:
Linear:
Quadratic:

$$
f(x) \approx f(a)
$$

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Properties of a Taylor Polynomial

Constant:
Linear:
Quadratic:

$$
\begin{aligned}
& f(x) \approx f(a) \\
& f(x) \approx f(a)+f^{\prime}(a)(x-a)
\end{aligned}
$$

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

$T_{n}(a)=f(a)$
$T_{n}^{\prime}(a)=f^{\prime}(a)$
$T_{n}^{\prime \prime}(a)=f^{\prime \prime}(a)$
\vdots
$T_{n}^{(n)}(a)=f^{(n)}(a)$
$T_{n}^{(n+1)}(a)=0$

Taylor Polynomials

Definition

For a natural number $n, n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$.

Taylor Polynomials

Definition
For a natural number $n, n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$.
By convention, $0!=1$.

Taylor Polynomials

Definition
For a natural number $n, n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$.
By convention, $0!=1$.
We write $f^{(n)}(x)$ to mean the nth derivative of $f(x)$.

Taylor Polynomials

Definition

For a natural number $n, n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$.
By convention, $0!=1$.
We write $f^{(n)}(x)$ to mean the nth derivative of $f(x)$.
Given a function $f(x)$ that is differentiable n times at a point a, the n-th degree Taylor polynomial for $f(x)$ about a is

$$
\begin{aligned}
T_{n}(a) & =f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
\end{aligned}
$$

If $a=0$, we call the function a Maclaurin polynomial.

Properties of a Taylor Polynomial

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Properties of a Taylor Polynomial

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

$$
T_{n}(a)=f(a)
$$

Properties of a Taylor Polynomial

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

$$
T_{n}(a)=f(a)
$$

$$
\begin{aligned}
T_{n}^{\prime}(x) & =f^{\prime}(a)+2 \frac{1}{2!} f^{\prime \prime}(a)(x-a)+3 \frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{2} \cdots+n \frac{1}{n!} f^{(n)}(a)(x-a)^{n-1} \\
& =f^{\prime}(a)+f^{\prime \prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{(n-1)!} f^{(n)}(a)(x-a)^{n-1}
\end{aligned}
$$

Properties of a Taylor Polynomial

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

$$
T_{n}(a)=f(a)
$$

$$
\begin{aligned}
T_{n}^{\prime}(x)= & f^{\prime}(a)+2 \frac{1}{2!} f^{\prime \prime}(a)(x-a)+3 \frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{2} \cdots+n \frac{1}{n!} f^{(n)}(a)(x-a)^{n-1} \\
= & f^{\prime}(a)+f^{\prime \prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{(n-1)!} f^{(n)}(a)(x-a)^{n-1} \\
& T_{n}^{\prime}(a)=f^{\prime}(a)
\end{aligned}
$$

Properties of a Taylor Polynomial

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

$$
T_{n}(a)=f(a)
$$

$$
\begin{aligned}
T_{n}^{\prime}(x) & =f^{\prime}(a)+2 \frac{1}{2!} f^{\prime \prime}(a)(x-a)+3 \frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{2} \cdots+n \frac{1}{n!} f^{(n)}(a)(x-a)^{n-1} \\
& =f^{\prime}(a)+f^{\prime \prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{(n-1)!} f^{(n)}(a)(x-a)^{n-1}
\end{aligned}
$$

$$
T_{n}^{\prime \prime}(x)=f^{\prime \prime}(a)+2 \frac{1}{2!} f^{\prime \prime \prime}(a)(x-a)+\cdots+(n-1) \frac{1}{(n-1)!} f^{(n)}(a)(x-a)^{n-2}
$$

$$
=f^{\prime \prime}(a)+f^{\prime \prime \prime}(a)(x-a)+\cdots+\frac{1}{(n-2)!} f^{(n)}(a)(x-a)^{n-2}
$$

Properties of a Taylor Polynomial

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

$$
T_{n}(a)=f(a)
$$

$$
\begin{aligned}
T_{n}^{\prime}(x) & =f^{\prime}(a)+2 \frac{1}{2!} f^{\prime \prime}(a)(x-a)+3 \frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{2} \cdots+n \frac{1}{n!} f^{(n)}(a)(x-a)^{n-1} \\
& =f^{\prime}(a)+f^{\prime \prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{(n-1)!} f^{(n)}(a)(x-a)^{n-1}
\end{aligned}
$$

$$
T_{n}^{\prime \prime}(x)=f^{\prime \prime}(a)+2 \frac{1}{2!} f^{\prime \prime \prime}(a)(x-a)+\cdots+(n-1) \frac{1}{(n-1)!} f^{(n)}(a)(x-a)^{n-2}
$$

$$
=f^{\prime \prime}(a)+f^{\prime \prime \prime}(a)(x-a)+\cdots+\frac{1}{(n-2)!} f^{(n)}(a)(x-a)^{n-2}
$$

$$
T_{n}^{\prime \prime}(a)=f^{\prime \prime}(a)
$$

Properties of a Taylor Polynomial

$$
T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

$$
T_{n}(a)=f(a)
$$

$$
\begin{aligned}
T_{n}^{\prime}(x) & =f^{\prime}(a)+2 \frac{1}{2!} f^{\prime \prime}(a)(x-a)+3 \frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{2} \cdots+n \frac{1}{n!} f^{(n)}(a)(x-a)^{n-1} \\
& =f^{\prime}(a)+f^{\prime \prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{(n-1)!} f^{(n)}(a)(x-a)^{n-1}
\end{aligned}
$$

$$
T_{n}^{\prime \prime}(x)=f^{\prime \prime}(a)+2 \frac{1}{2!} f^{\prime \prime \prime}(a)(x-a)+\cdots+(n-1) \frac{1}{(n-1)!} f^{(n)}(a)(x-a)^{n-2}
$$

$$
=f^{\prime \prime}(a)+f^{\prime \prime \prime}(a)(x-a)+\cdots+\frac{1}{(n-2)!} f^{(n)}(a)(x-a)^{n-2}
$$

$$
T_{n}^{\prime \prime}(a)=f^{\prime \prime}(a)
$$

$$
T_{n}^{(n)}(a)=f^{(n)}(a)
$$

$$
T_{n}^{(n+1)}(a)=0
$$

$$
T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Example: Taylor 1
Find the 7 th degree Maclaurin ${ }^{1}$ polynomial for e^{x}.

[^0]$$
T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Example: Taylor 1
Find the 7 th degree Maclaurin ${ }^{1}$ polynomial for e^{x}.

Let $f(x)=e^{x}$. Then every derivative of e^{x} is just e^{x}, and $e^{0}=1$. So:

$$
\begin{aligned}
T_{7}(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{1}{2} f^{\prime \prime}(0)(x-0)^{2}+\cdots+\frac{1}{7!} f^{(7)}(0)(x-0)^{7} \\
& =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\frac{x^{7}}{7!} \\
& =\sum_{k=0}^{7} \frac{x^{k}}{k!}
\end{aligned}
$$

${ }^{1}$ Remember: a Maclaurin polynomial is just a Taylor polynomial centered about $a=0$

$$
T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Example: Taylor 1
Find the 7 th degree Maclaurin ${ }^{1}$ polynomial for e^{x}.

Let $f(x)=e^{x}$. Then every derivative of e^{x} is just e^{x}, and $e^{0}=1$. So:

$$
\begin{aligned}
T_{7}(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{1}{2} f^{\prime \prime}(0)(x-0)^{2}+\cdots+\frac{1}{7!} f^{(7)}(0)(x-0)^{7} \\
& =1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\frac{x^{6}}{6!}+\frac{x^{7}}{7!} \\
& =\sum_{k=0}^{7} \frac{x^{k}}{k!}
\end{aligned}
$$

e^{x} approximations - link
${ }^{1}$ Remember: a Maclaurin polynomial is just a Taylor polynomial centered about $a=0$

$$
T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Example: Taylor 2
Find the 8 th degree Maclaurin ${ }^{2}$ polynomial for $f(x)=\sin x$.

[^1]$$
T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Example: Taylor 2
Find the 8th degree Maclaurin ${ }^{2}$ polynomial for $f(x)=\sin x$.

$$
\begin{array}{rlrl}
f(x) & =\sin x & f(0) & =0 \\
f^{\prime}(x) & =\cos x & f^{\prime}(0) & =1 \\
f^{\prime \prime}(x) & =-\sin x & f^{\prime \prime}(0) & =0 \\
f^{\prime \prime \prime}(x) & =-\cos x & f^{\prime \prime \prime}(0) & =-1
\end{array}
$$

$$
T_{8}(x)=f(0)+f^{\prime}(0)(x-0)+\frac{1}{2} f^{\prime \prime}(0)(x-0)^{2}+\cdots+\frac{1}{8!} f^{(8)}(0)(x-0)^{8}
$$

$$
=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}
$$

$$
=\sum_{k=0}^{3} \frac{x^{2 k+1}}{(2 k+1)!}
$$

Link: sine approximations

[^2]$$
T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Example: Taylor 3

Find the 7th degree Taylor polynomial for $f(x)=\ln x$, centered at $a=1$.

$$
T_{n}(a)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\cdots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

Example: Taylor 3
Find the 7th degree Taylor polynomial for $f(x)=\ln x$, centered at $a=1$.

$$
\begin{aligned}
& f(x)=\ln x \\
& f(1)=0 \\
& f^{(4)}(x)=-3!x^{-4} \\
& f^{(4)}(1)=-3! \\
& f^{\prime}(x)=x^{-1} \\
& f^{\prime}(1)=1 \\
& f^{(5)}(x)=4!x^{-5} \\
& f^{(5)}(1)=4! \\
& f^{\prime \prime}(x)=-x^{-2} \\
& f^{\prime \prime}(1)-1 \\
& f^{(6)}(x)=-5!x^{-6} \\
& f^{(6)}(1)=-5! \\
& f^{\prime \prime \prime}(x)=2 x^{-3} \\
& f^{\prime \prime \prime}(1)=2 \\
& f^{(7)}(x)=6!x^{-7} \\
& f^{(7)}(1)=6! \\
& T_{8}(x)=f(1)+f^{\prime}(1)(x-1)+\frac{1}{2} f^{\prime \prime}(1)(x-1)^{2}+\cdots+\frac{1}{7!} f^{(7)}(1)(x-1)^{7} \\
& =0+(1)(x-1)+(-1) \frac{1}{2}(x-1)^{2}+(2) \frac{1}{3!}(x-1)^{3}-3!\frac{1}{4!}(x-1)^{4} \\
& +4!\frac{1}{5!}(x-1)^{5}-5!\frac{1}{6!}(x-1)^{6}+6!\frac{1}{7!}(x-1)^{7} \\
& =(x-1)-\frac{x-1}{2}+\frac{(x-1)^{2}}{3}-\frac{(x-1)^{3}}{4}+\frac{(x-1)^{4}}{5}-\frac{(x-1)^{5}}{6}+\frac{(x-1)^{6}}{7!} \\
& =\sum_{k=0}^{7}(-1)^{k+1} \frac{(x-1)^{k}}{k}
\end{aligned}
$$

Error: What Makes an Approximation Accurate?

degree	conditions	formula
0	$f(a)=T_{0}(a)$	$T_{0}(x)=f(a)$
1	$f(a)=T_{1}(a)$	$T_{1}(x)=f(a)+f^{\prime}(a)(x-a)$
	$f^{\prime}(a)=T_{1}^{\prime}(a)$	
2	$f(a)=T_{2}(a)$	
	$f^{\prime}(a)=T_{2}^{\prime}(a)$	$T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}$
	$f^{\prime \prime}(a)=T_{2}^{\prime \prime}(a)$	
	$f(a)=T_{n}(a)$	
n	$f^{\prime}(a)=T_{n}^{\prime}(a)$	
	$f^{\prime \prime}(a)=T_{n}^{\prime \prime}(a)$	$T_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}$
	\vdots	
	$f^{(n)}(a)=T_{n}^{(n)}(a)$	

Error Term: Taylor's Theorem

Error

The error in an estimation $f(x) \approx T_{n}(x)$ is $f(x)-T_{n}(x)$. We often use $\left|f(x)-T_{n}(x)\right|$ if we don't care whether the approximation is too big or too little, but only that it is not too egregious.

Taylor's Theorem

For some c strictly between x and a,

$$
f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

Error Term: Taylor's Theorem

Error

The error in an estimation $f(x) \approx T_{n}(x)$ is $f(x)-T_{n}(x)$. We often use $\left|f(x)-T_{n}(x)\right|$ if we don't care whether the approximation is too big or too little, but only that it is not too egregious.

Taylor's Theorem

For some c strictly between x and a,

$$
f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}
$$

The trick is bounding $f^{(n+1)}(c)$. It's usually OK to be sloppy here! Also, usually what we care about is the magnitude of the error: $\left|f(x)-T_{n}(x)\right|$.

Third degree Maclaurin polynomial for $f(x)=e^{x}$:

Third degree Maclaurin polynomial for $f(x)=e^{x}$:

$$
\begin{aligned}
T_{3}(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{1}{2!} f^{\prime \prime}(0)(x-0)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(0)(x-0)^{3} \\
& =e^{0}+e^{0} x+\frac{1}{2!} e^{0} x^{2}+\frac{1}{3!} e^{0} x^{3} \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
\end{aligned}
$$

Third degree Maclaurin polynomial for $f(x)=e^{x}$:

$$
\begin{aligned}
T_{3}(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{1}{2!} f^{\prime \prime}(0)(x-0)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(0)(x-0)^{3} \\
& =e^{0}+e^{0} x+\frac{1}{2!} e^{0} x^{2}+\frac{1}{3!} e^{0} x^{3} \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
\end{aligned}
$$

Example: Taylor 4

Bound the error associated with using $T_{3}(x)$ to approximate $e^{1 / 10}$.
Recall $f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}$ for some c between x and a, and $2<e<3$.

Third degree Maclaurin polynomial for $f(x)=e^{x}$:

$$
\begin{aligned}
T_{3}(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{1}{2!} f^{\prime \prime}(0)(x-0)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(0)(x-0)^{3} \\
& =e^{0}+e^{0} x+\frac{1}{2!} e^{0} x^{2}+\frac{1}{3!} e^{0} x^{3} \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}
\end{aligned}
$$

Example: Taylor 4

Bound the error associated with using $T_{3}(x)$ to approximate $e^{1 / 10}$.
Recall $f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}$ for some c between x and a, and $2<e<3$.

For some c strictly between 0 and $.1: \underbrace{f(.1)-T_{3}(.1)}_{\text {error }}=\frac{1}{4!} f^{(4)}(c)(.1-0)^{4}=\frac{1}{4!10^{4}} e^{c}$
For c in $(0, .1), 1 \leq e^{c}<e^{1}<3$, so
$\frac{1}{4!10^{4}} \cdot 1 \leq \underbrace{f(.1)-T_{3}(.1)}_{\text {error }} \leq \frac{1}{4!10^{4}} \cdot 3$
$0.0000041 \overline{6} \leq f(.1)-T_{3}(.1) \leq 0.0000125$

Example: Taylor 5

Suppose we use the 5 th degree Taylor polynomial centered at $a=\pi / 2$ to approximate $f(x)=\cos x$. What could magnitude of the error be if we approximate $\cos (2) ?$

Recall $f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}$ for some c between x and a.

We don't actually have to compute $T_{5}(x)$, but if you want to as an exercise, click here to see it.

Suppose we use the 5th degree Taylor polynomial centered at $a=\pi / 2$ to approximate $f(x)=\cos x$. What could magnitude of the error be if we approximate $\cos (2) ?$

Recall $f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}$ for some c between x and a.

We don't actually have to compute $T_{5}(x)$, but if you want to as an exercise, click here to see it.

For some c in $(\pi / 2,2)$:

$$
|\underbrace{f(2)-T_{5}(2)}_{\text {error }}|=\left|\frac{1}{6!} f^{(6)}(c)(2-\pi / 2)^{6}\right|
$$

Note $f^{(6)}(x)$ is going to be positive or negative sine or cosine, so $\left|f^{(6)}(c)\right| \leq 1$. Also, $|2-\pi / 2|<\frac{1}{2}$. Now:

$$
\left|f(2)-T_{5}(2)\right|<\frac{1}{6!}(1)\left(\frac{1}{2}\right)^{6}=\frac{1}{6!2^{6}}
$$

And $\frac{1}{6!2^{6}} \approx 0.0000217$.

Example: Taylor 6

Suppose we use a third degree Taylor polynomial centered at 4 to approximate $f(x)=\sqrt{x}$. If we use this Taylor polynomial to approximate $\sqrt{4.1}$, give a bound for the magnitude of our error.

Recall $f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}$ for some c between x and a.

Suppose we use a third degree Taylor polynomial centered at 4 to approximate $f(x)=\sqrt{x}$. If we use this Taylor polynomial to approximate $\sqrt{4.1}$, give a bound for the magnitude of our error.

Recall $f(x)-T_{n}(x)=\frac{1}{(n+1)!} f^{(n+1)}(c)(x-a)^{n+1}$ for some c between x and a.

For some c in $(4,4.1),\left|f(4.1)-T_{3}(4.1)\right|=\left|\frac{1}{4!} f^{(4)}(c)(4.1-4)^{4}\right|=\frac{.1^{4}}{4!} f^{(4)}(c)$

So, let's investigate $f^{(4)}(c)$. First we find that the fourth derivative of $f(x)=x^{1 / 2}$ is $f^{(4)}(x)=\frac{-15}{16} x^{-7 / 2}$. So, for c in $(4,4.1)$, we have $\left|f^{(4)}(c)\right|=\left|\frac{-15}{16 \sqrt{c^{7}}}\right|=\frac{15}{16 \sqrt{c^{7}}} \leq \frac{15}{16 \sqrt{4}}=\frac{15}{16 \cdot 2^{7}}$

So, the error is bounded by: $\left|f(4.1)-T_{3}(4.1)\right| \leq \frac{.1^{4}}{4!} \cdot \frac{15}{16 \cdot 2^{7}} \approx 0.00000003$

Example: Taylor 7

Suppose you want to approximate the value of e, knowing only that it is somewhere between 2 and 3. You use a 4th degree Maclaurin polynomial for $f(x)=e^{x}$ to approximate $f(1)=e^{1}=e$. Bound the magnitude of your error.

Example: Taylor 7

Suppose you want to approximate the value of e, knowing only that it is somewhere between 2 and 3. You use a 4th degree Maclaurin polynomial for $f(x)=e^{x}$ to approximate $f(1)=e^{1}=e$. Bound the magnitude of your error.
For some c in $(0,1):\left|f(1)-T_{4}(1)\right|=\left|\frac{1}{5!} f^{(5)}(c)(1-0)^{5}\right|=\frac{1}{5!} e^{c} \leq \frac{1}{5!} e^{1}<\frac{3}{5!}=0.025$

Which Degree?

```
Example: Taylor }
```

Suppose you want to approximate $\sin 3$ using a Taylor polynomial of $f(x)=\sin x$ centered at $a=\pi$. If the magnitude of your error must be less than 0.001 , what degree Taylor polynomial should you use?

Which Degree?

```
Example: Taylor }
```

Suppose you want to approximate $\sin 3$ using a Taylor polynomial of $f(x)=\sin x$ centered at $a=\pi$. If the magnitude of your error must be less than 0.001 , what degree Taylor polynomial should you use?
We want the magnitude of the error, so let's deal with absolute values. For some c in $(3, \pi)$:
$\left|f(3)-T_{n}(3)\right|=\left|\frac{1}{(n+1)!} f^{(n+1)}(c)(3-\pi)^{n+1}\right|=\frac{|3-\pi|^{n+1}}{(n+1)!}\left|f^{(n+1)}(c)\right| \leq \frac{(.2)^{n+1}}{(n+1)!}(1)=\frac{2^{n+1}}{(n+1)!}$ If we plug in $n=2$, we get $\frac{2^{n+1}}{(n+1)!}=0.00133 \ldots$, which is not SMALLER than 0.001 . If we plug in $n=3$, we get $\frac{2^{n+1}}{(n+1)!}=0.000066 \ldots$ which IS smaller than 0.001 . So we have to use the degree 3 Taylor polynomial.

```
Example: Taylor 9
```

Suppose you want to approximate e^{5} using a Maclaurin polynomial of $f(x)=e^{x}$. If the magnitude of your error must be less than 0.001, what degree Maclaurin polynomial should you use?

Suppose you want to approximate e^{5} using a Maclaurin polynomial of $f(x)=e^{x}$. If the magnitude of your error must be less than 0.001 , what degree Maclaurin polynomial should you use?
The magnitude of the error means its absolute value. Our error is, for some c in $(0,5)$: $f(5)-T_{n}(5)=\frac{1}{(n+1)!} f^{(n+1)}(c)(5-0)^{n+1}=\frac{1}{(n+1)!} e^{c} 5^{n+1}$.
We can bound e^{c} for c in $(0,5)$ by $1=e^{0}<e^{c}<e^{5}<3^{5}$. So now: $f(5)-T_{n}(5) \leq \frac{1}{(n+1)!} \cdot 3^{5} \cdot 5^{n+1}$
We set $\frac{1}{(n+1)!} \cdot 3^{5} \cdot 5^{n+1}>0.001$, and by plugging in different values of n, we find the smallest n that makes the inequality true is $n=21$. So we can use the 21 st-degree Maclaurin polynomial and get our desired error.

```
Example: Taylor 10
```

Suppose you want to approximate $\ln 3$ using a Taylor polynomial of $f(x)=\ln x$ centered at $a=1$. If the magnitude of your error must be less than 0.001 , what degree Taylor polynomial should you use?

Suppose you want to approximate $\ln 3$ using a Taylor polynomial of $f(x)=\ln x$ centered at $a=1$. If the magnitude of your error must be less than 0.001 , what degree Taylor polynomial should you use?
Your error will be: $f(3)-T_{n}(3)=\frac{1}{(n+1)!} f^{(n)}(c)(3-1)^{n+1}$ for some c in $(0,3)$. So, we need to bound $f^{(n)}(c)$. by writing out a number of derivatives of natural log, we notice that for $n \geq 1, f^{(n)}(c)=(-1)^{n-1}(n-1)!c^{-n}$. So, $f^{(n+1)}(c)=(-1)^{n} n!c^{-n}$. For c in $(0,3)$:

$$
\frac{n!}{1^{n}}=n!\leq\left|f^{(n+1)}(c)\right| \leq \frac{n!}{3^{n}}
$$

Now for the error:

$$
\left|f(3)-T_{n}(3)\right| \leq \frac{1}{(n+1)!} \cdot \frac{n!}{3^{n}} \cdot 2^{n+1}=\frac{2^{n+1}}{(n+1) 3^{n}}
$$

Setting this <0.001, we find by plugging in values of n that $n=5$ is the smallest n that makes the inequality true. So, using $T_{5}(x)$ will give us our desired error.

Taylor Error

Example: Taylor 11

Let $f(x)=\sqrt[4]{x}$. Suppose you use a second-degree Taylor polynomial of $f(x)$ centered at $a=81$ to approximate $\sqrt[4]{81.2}$. Bound your error, and tell whether $T_{2}(10)$ is an overestimate or underestimate.

Taylor's formula tells us that, for some c in $(81,81.2)$:

$$
f(10)-T_{2}(10)=\frac{1}{3!} f^{(3)}(c)(81.2-81)^{3}=\frac{1}{6} \cdot\left(\frac{1}{5}\right)^{3} f^{(3)}(c)=\frac{1}{6 \cdot 5^{3}} f^{(3)}(c)
$$

So, we should probably find out what $f^{(3)}(x)$ is. Since $f(x)=x^{1 / 4}$, it's not too hard to figure out $f^{\prime \prime \prime}(x)=\frac{21}{4^{3}} x^{-11 / 4}$. So, $f^{\prime \prime \prime}(c)=\frac{21}{4^{3} c^{11 / 4}}$. Plugging in:

$$
f(10)-T_{2}(10)=\frac{1}{6 \cdot 5^{3}} \cdot \frac{21}{4^{3} c^{11 / 4}}=\frac{7}{2 \cdot 4^{3} \cdot 5^{3} \cdot c^{11 / 4}}
$$

Now our job is to bound this, and we should use reasonable numbers.

$$
\begin{aligned}
81 & \leq c \leq 81.2 \\
81^{11 / 4} & \leq c^{11 / 4} \leq 81.2^{11 / 4} \\
(\sqrt[4]{81})^{11} & \leq c^{11 / 4} \leq \sqrt[4]{81.2^{11}} \\
3^{11} & \leq c^{11 / 4} \leq 4^{11} \\
\frac{1}{4^{11}} & \leq \frac{1}{c^{11 / 4}} \leq \frac{1}{3^{11}} \\
\frac{7}{2 \cdot 4^{3} \cdot 5^{3} \cdot 4^{11}} & \leq \frac{7}{2 \cdot 4^{3} \cdot 5^{3} c^{11 / 4}} \leq \frac{7}{2 \cdot 4^{3} \cdot 5^{3} \cdot 3^{11}}
\end{aligned}
$$

So, $\frac{7}{2 \cdot 4^{3} \cdot 5^{3} \cdot 4^{11}} \leq f(x)-T_{2}(x) \leq \frac{7}{2 \cdot 4^{3} \cdot 5^{3} \cdot 3^{11}}$ And, since $f(x)-T_{2}(x)$ is positive, $T_{2}(x)$ is an underestimate.

[^0]: ${ }^{1}$ Remember: a Maclaurin polynomial is just a Taylor polynomial centered about $a=0$

[^1]: ${ }^{2}$ Remember: a Maclaurin polynomial is just a Taylor polynomial centered about $a=0$

[^2]: ${ }^{2}$ Remember: a Maclaurin polynomial is just a Taylor polynomial centered about $a=0$

