Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

$$
f(x)=\frac{\sqrt{3-x^{2}}}{\ln (x+1)}
$$

Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

$$
f(x)=\frac{\sqrt{3-x^{2}}}{\ln (x+1)}
$$

$(-1,0) \cup(0, \sqrt{3}]$

Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

$$
f(x)=\frac{\sqrt{3-x^{2}}}{\ln (x+1)}
$$

$(-1,0) \cup(0, \sqrt{3}]$
Where might you expect $f(x)$ to have a vertical asymptote? What does the function look like nearby?
(Recall: a vertical asymptote occurs at $x=a$ if the function has an infinite discontinuity at a. That is, $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$.)

Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

$$
f(x)=\frac{\sqrt{3-x^{2}}}{\ln (x+1)}
$$

$(-1,0) \cup(0, \sqrt{3}]$
Where might you expect $f(x)$ to have a vertical asymptote? What does the function look like nearby?
(Recall: a vertical asymptote occurs at $x=a$ if the function has an infinite discontinuity at a. That is, $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$.)

Where is $f(x)=0$?

Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

$$
f(x)=\frac{\sqrt{3-x^{2}}}{\ln (x+1)}
$$

$(-1,0) \cup(0, \sqrt{3}]$
Where might you expect $f(x)$ to have a vertical asymptote? What does the function look like nearby?
(Recall: a vertical asymptote occurs at $x=a$ if the function has an infinite discontinuity at a. That is, $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$.)

Where is $f(x)=0$?
What happens to $f(x)$ near its other endpoint, $x=-1$?

Curve Sketching

Example: Sketch 1

Review: find the domain of the following function.

$$
f(x)=\frac{\sqrt{3-x^{2}}}{\ln (x+1)}
$$

$(-1,0) \cup(0, \sqrt{3}]$
Where might you expect $f(x)$ to have a vertical asymptote? What does the function look like nearby?
(Recall: a vertical asymptote occurs at $x=a$ if the function has an infinite discontinuity at a. That is, $\lim _{x \rightarrow a^{ \pm}} f(x)= \pm \infty$.)

Where is $f(x)=0$?
What happens to $f(x)$ near its other endpoint, $x=-1$?
https://www.desmos.com/calculator/9funm5gwrt

Curve Sketching

Good things to check:

- Domain
- Vertical asymptotes: $\lim _{x \rightarrow a} f(x)= \pm \infty$
- Intercepts: $x=0, f(x)=0$
- Horizontal asymptotes and end behavior: $\lim _{x \rightarrow \pm \infty} f(x)$

Curve Sketching

Example: Sketch 2

What does the graph of the following function look like?

$$
f(x)=\frac{x-2}{(x+3)^{2}}
$$

Remember: domain, vertical asymptotes, intercepts, and horizontal asymptotes

Curve Sketching

Example: Sketch 2

What does the graph of the following function look like?

$$
f(x)=\frac{x-2}{(x+3)^{2}}
$$

Remember: domain, vertical asymptotes, intercepts, and horizontal asymptotes

Curve Sketching

Example: Sketch 3
What does the graph of the following function look like?

$$
f(x)=\frac{(x+2)(x-3)^{2}}{x(x-5)}
$$

Curve Sketching

Example: Sketch 3
What does the graph of the following function look like?

$$
f(x)=\frac{(x+2)(x-3)^{2}}{x(x-5)}
$$

First Derivative

```
Example: Sketch 4
```

Add complexity: Increasing/decreasing, critical and singular points.

First Derivative

```
Example: Sketch 4
```

Add complexity: Increasing/decreasing, critical and singular points.

$$
f(x)=\frac{1}{2} x^{4}-\frac{4}{3} x^{3}-15 x^{2}
$$

First Derivative

Example: Sketch 4

Add complexity: Increasing/decreasing, critical and singular points.

$$
f(x)=\frac{1}{2} x^{4}-\frac{4}{3} x^{3}-15 x^{2}
$$

-Domain: all real numbers

- Intercepts: $(0,0)$ jumps out; we can factor $f(x)=x^{2}\left(\frac{1}{2} x^{2}-\frac{4}{3} x-15\right)$ then use quadratic formula to find y-intercepts at $x=\frac{4 \pm \sqrt{286}}{3}$, so $x \approx 7$ and $x \approx-4.3$.
- As x goes to positive or negative infinity, function goes to infinity
- $f^{\prime}(x)=2 x^{3}-4 x^{2}-30 x=2 x\left(x^{2}-2-15\right)=2 x(x-5)(x+3)$ so critical points are $x=0, x=-3$, and $x=5$. No singular points.

$x \approx-4.3$	$x<-3$	$x=-3$	$-3<x<0$	$x=0$	$0<x<5$	$x=5$	$x>5$	$x \approx 7$
$f(x)=0$	$f^{\prime}<0$	$C P$	$f^{\prime}>0$	$C P$	$f^{\prime}<0$	$C P$	$f^{\prime}>0$	$\mathrm{f}(x)=0$
intercept	decr	I. min	incr	I. max	decr	I. min	incr	intercept

https://www.desmos.com/calculator/lxdlgmhnsl

Example: Sketch 5

What does the following function look like?

$$
f(x)=\frac{1}{3} x^{3}+2 x^{2}+4 x+24
$$

What does the following function look like?

$$
f(x)=\frac{1}{3} x^{3}+2 x^{2}+4 x+24
$$

-Domain: all real numbers. No VA. Goes to $\pm \infty$.

- $f(0)=24 ; f(x)=\frac{1}{3} x^{2}(x+6)+4(x+6)=\left(\frac{1}{3} x^{2}+4\right)(x+6)$, so only one root: $f(-6)=0$.
- $f^{\prime}(x)=x^{2}+4 \times 4=(x+2)^{2}$; only one critical point, at $x=-2$, and increasing everywhere else
\bullet So, at the left, comes from negative infinity; levels crosses x-axis at $x=-6$; levels out at $x=-2$; crosses y-axis at $y=24$; carries on to infinity https://www.desmos.com/calculator/xum0mstmiv

Example: Sketch 6

What does the graph of the following function look like?

$$
f(x)=e^{\frac{x+1}{x-1}}
$$

What does the graph of the following function look like?

$$
f(x)=e^{\frac{x+1}{x-1}}
$$

\bullet Domain: $x \neq 1 \bullet$ VA: something weird happens at $x=1$. Check out limits:
$\lim _{x \rightarrow 1^{-}} \frac{x+1}{x-1}=-\infty$ and $\lim _{x \rightarrow 1^{+}} \frac{x+1}{x-1}=\infty$, so $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{A \rightarrow-\infty} e^{A}=0$ while $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{A \rightarrow \infty} e^{A}=\infty$.

- Horizontal asymptotes: $\lim _{x \rightarrow \pm \infty} f(x)=e$
- Intercepts: the function is never zero; $f(0)=\frac{1}{e}$.
- Derivative: $f^{\prime}(x)=e^{\frac{x+1}{x-1}}\left(\frac{-2}{(x-1)^{2}}\right)$; so the function is always decreasing (when it's defined!)
- So, on either end, it gets extremely close to e; as we move left to right, it dips to $\frac{1}{e}$ at the y-axis; gets nearly to the x-axis at 1 ; then has a VA from the right only at 1 ; then dips back to very close to e.
https://www.desmos.com/calculator/x0cccy1ggj

Concavity

Slopes are increasing

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Slopes are decreasing

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"

Slopes are decreasing

$$
f^{\prime \prime}(x)<0
$$

Concavity

Slopes are increasing

$$
\begin{gathered}
f^{\prime \prime}(x)>0 \\
\text { "concave up" }
\end{gathered}
$$

Slopes are decreasing

$$
\begin{gathered}
f^{\prime \prime}(x)<0 \\
\text { "concave down" }
\end{gathered}
$$

Concavity

Slopes are increasing

$$
f^{\prime \prime}(x)>0
$$

"concave up"
tangent line below curve

Slopes are decreasing

$$
f^{\prime \prime}(x)<0
$$

"concave down"
tangent line above curve

Mnemonic

Concavity

Concavity

concave up

Concavity

Concavity

Concavity

Concavity

Concavity

Poll Questions

Describe the concavity of the function $f(x)=e^{x}$.
A. concave up
B. concave down
C. concave up for $x<0$; concave down for $x>0$
D. concave down for $x<0$; concave up for $x>0$
E. I'm not sure

Poll Questions

Describe the concavity of the function $f(x)=e^{x}$.
A. concave up
B. concave down
C. concave up for $x<0$; concave down for $x>0$
D. concave down for $x<0$; concave up for $x>0$
E. I'm not sure

Poll Questions

Describe the concavity of the function $f(x)=e^{x}$.
A. concave up
B. concave down
C. concave up for $x<0$; concave down for $x>0$
D. concave down for $x<0$; concave up for $x>0$
E. I'm not sure

Is it possible to be concave up and decreasing?
A. Yes
B. No
C. I'm not sure

Poll Questions

Describe the concavity of the function $f(x)=e^{x}$.
A. concave up
B. concave down
C. concave up for $x<0$; concave down for $x>0$
D. concave down for $x<0$; concave up for $x>0$
E. I'm not sure

Is it possible to be concave up and decreasing?
A. Yes
B. No
C. I'm not sure

Poll Questions

Describe the concavity of the function $f(x)=e^{x}$.
A. concave up
B. concave down
C. concave up for $x<0$; concave down for $x>0$
D. concave down for $x<0$; concave up for $x>0$
E. I'm not sure

Is it possible to be concave up and decreasing?
A. Yes
B. No
C. I'm not sure

Suppose a function $f(x)$ is defined for all real numbers, and is concave up on the interval $[0,1]$. Which of the following must be true?
A. $f^{\prime}(0)<f^{\prime}(1)$
B. $f^{\prime}(0)>f^{\prime}(1)$
C. $f^{\prime}(0)$ is positive
D. $f^{\prime}(0)$ is negative
E. I'm not sure

Poll Questions

Describe the concavity of the function $f(x)=e^{x}$.
A. concave up
B. concave down
C. concave up for $x<0$; concave down for $x>0$
D. concave down for $x<0$; concave up for $x>0$
E. I'm not sure

Is it possible to be concave up and decreasing?
A. Yes
B. No
C. I'm not sure

Suppose a function $f(x)$ is defined for all real numbers, and is concave up on the interval $[0,1]$. Which of the following must be true?
A. $f^{\prime}(0)<f^{\prime}(1)$
B. $f^{\prime}(0)>f^{\prime}(1)$
C. $f^{\prime}(0)$ is positive
D. $f^{\prime}(0)$ is negative
E. I'm not sure

From Last Time

Example: Sketch 6.5

$$
f(x)=\frac{1}{2} x^{4}-\frac{4}{3} x^{3}-15 x^{2}
$$

From Last Time

Example: Sketch 6.5

$$
f(x)=\frac{1}{2} x^{4}-\frac{4}{3} x^{3}-15 x^{2}
$$

$f^{\prime \prime}(x)=6 x^{2}-8 x-30=2(x-3)(3 x+5)$

From Last Time

Example: Sketch 6.5

$$
f(x)=\frac{1}{2} x^{4}-\frac{4}{3} x^{3}-15 x^{2}
$$

$f^{\prime \prime}(x)=6 x^{2}-8 x-30=2(x-3)(3 x+5)$

From Last Time

Example: Sketch 6.5

$$
f(x)=\frac{1}{2} x^{4}-\frac{4}{3} x^{3}-15 x^{2}
$$

$f^{\prime \prime}(x)=6 x^{2}-8 x-30=2(x-3)(3 x+5)$

Sketch:

$$
f(x)=x^{5}-15 x^{3}
$$

Sketch:

$$
f(x)=x^{5}-15 x^{3}
$$

Symmetry!

Sketch:

$$
f(x)=x^{5}-15 x^{3}
$$

Symmetry!

-Defined and differentiable for all real numbers.
-Roots: $x=0, x= \pm \sqrt{15} \approx 4$
-Goes to $\pm \infty$ as x goes to $\pm \infty$
-CP: $x=0, x= \pm 3$. Increasing on $(-\infty,-3)$, decreasing $(-3,0)$ and $(0,3)$, decreasing $(3, \infty)$
-So, local max at $x=-3$ and local min at $x=3$

- $f^{\prime \prime}(x)=0$ for $x=0$ and $x= \pm \frac{3}{\sqrt{2}} \approx \pm 2$. All of these are inflection points; concave down $\left(-\infty,-\frac{3}{\sqrt{2}}\right)$, concave up $\left(\frac{3}{\sqrt{2}}, 0\right)$, concave down $\left(0, \frac{3}{\sqrt{2}}\right)$, and concave up $\left(\frac{3}{\sqrt{2}}, \infty\right)$.
- $f(3)=-162, f(-3)=-162, f(-3 / \sqrt{2}) \approx 100, f(3 / \sqrt{2}) \approx-100$
https://www.desmos.com/calculator/uoii6nmgr8

Even and Odd Functions

Even and Odd Functions

Even and Odd Functions

Even and Odd Functions

even function

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

even function

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

even function
Suppose $f(3)=-1$.

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

even function
Suppose $f(3)=-1$.Then $f(-3)=$

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

even function
Suppose $f(3)=-1$. Then $f(-3)=-1$ also.

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

even function
Suppose $f(3)=-1$. Then $f(-3)=-1$ also.
Suppose $f(6)=1$.

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

even function
Suppose $f(3)=-1$. Then $f(-3)=-1$ also.
Suppose $f(6)=1$. Then $f(-6)=$

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

even function
Suppose $f(3)=-1$.Then $f(-3)=-1$ also.
Suppose $f(6)=1$. Then $f(-6)=1$ also.

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

Examples:

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

Examples:
$f(x)=x^{2}$

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

Examples:
$f(x)=x^{2}$
$f(x)=x^{4}$

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

Examples:

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(x)=x^{4} \\
& f(x)=\cos (x)
\end{aligned}
$$

Even Functions

Even Function

A function $f(x)$ is even if, for all x in its domain,

$$
f(-x)=f(x)
$$

Examples:

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(x)=x^{4} \\
& f(x)=\cos (x) \\
& f(x)=\frac{x^{4}+\cos (x)}{x^{16}+7}
\end{aligned}
$$

Odd Functions

odd function

Odd Functions

odd function
Suppose $f(1)=2$.

Odd Functions

odd function
Suppose $f(1)=2$. Then $f(-1)=$

Odd Functions

Suppose $f(1)=2$. Then $f(-1)=-2$.

Odd Functions

Suppose $f(1)=2$. Then $f(-1)=-2$.
Suppose $f(3)=-2$.

Odd Functions

Suppose $f(1)=2$. Then $f(-1)=-2$.
Suppose $f(3)=-2$. Then $f(-3)=$

Odd Functions

Suppose $f(1)=2$. Then $f(-1)=-2$.
Suppose $f(3)=-2$. Then $f(-3)=2$.

Odd Functions

Suppose $f(1)=2$. Then $f(-1)=-2$.
Suppose $f(3)=-2$. Then $f(-3)=2$.

Even Function

A function $f(x)$ is odd if, for all x in its domain,

Odd Functions

Suppose $f(1)=2$. Then $f(-1)=-2$.
Suppose $f(3)=-2$. Then $f(-3)=2$.

Even Function

A function $f(x)$ is odd if, for all x in its domain,

$$
f(-x)=-f(x)
$$

Even Functions

Even Function

A function $f(x)$ is odd if, for all x in its domain,

$$
f(-x)=-f(x)
$$

Examples:

Even Functions

Even Function

A function $f(x)$ is odd if, for all x in its domain,

$$
f(-x)=-f(x)
$$

Examples:
$f(x)=x$

Even Functions

Even Function

A function $f(x)$ is odd if, for all x in its domain,

$$
f(-x)=-f(x)
$$

Examples:
$f(x)=x$
$f(x)=x^{3}$

Even Functions

Even Function

A function $f(x)$ is odd if, for all x in its domain,

$$
f(-x)=-f(x)
$$

Examples:
$f(x)=x$
$f(x)=x^{3}$
$f(x)=\sin (x)$

Even Functions

Even Function

A function $f(x)$ is odd if, for all x in its domain,

$$
f(-x)=-f(x)
$$

Examples:
$f(x)=x$
$f(x)=x^{3}$
$f(x)=\sin (x)$
$f(x)=\frac{x\left(1+x^{2}\right)}{x^{2}+5}$

Poll Tiiime

Pick out the odd function.

Poll Tiiime

Pick out the odd function.

Poll Tiiime

Pick out the even function.

Poll Tiiime

Pick out the even function.

Even more Poll tiiiiime

Suppose $f(x)$ is an odd function, continuous, defined for all real numbers. What is $f(0)$? Pick the best answer.
A. $f(0)=f(-0)$
B. $f(0)=-f(0)$
C. $f(0)=0$
D. all of the above are true
E. none of the above are necessarily true

Even more Poll tiiiiime

Suppose $f(x)$ is an odd function, continuous, defined for all real numbers. What is $f(0)$? Pick the best answer.
A. $f(0)=f(-0)$
B. $f(0)=-f(0)$
C. $f(0)=0$
D. all of the above are true
E. none of the above are necessarily true

Even more Poll tiiiiime

Suppose $f(x)$ is an odd function, continuous, defined for all real numbers. What is $f(0)$? Pick the best answer.
A. $f(0)=f(-0)<-$ true but uninteresting, for all functions
B. $f(0)=-f(0)$
C. $f(0)=0$
D. all of the above are true
E. none of the above are necessarily true

Even more Poll tiiiiime

Suppose $f(x)$ is an odd function, continuous, defined for all real numbers. What is $f(0)$? Pick the best answer.
A. $f(0)=f(-0)<-$ true but uninteresting, for all functions
B. $f(0)=-f(0)<-$ only possible for $f(0)=0$
C. $f(0)=0$
D. all of the above are true
E. none of the above are necessarily true

Even more Poll tiiiiime

Suppose $f(x)$ is an odd function, continuous, defined for all real numbers. What is $f(0)$? Pick the best answer.
A. $f(0)=f(-0)<-$ true but uninteresting, for all functions
B. $f(0)=-f(0)<-$ only possible for $f(0)=0$
C. $f(0)=0<$ - this is equivalent to the choice above
D. all of the above are true
E. none of the above are necessarily true

Even more and more Poll tiiiiime

Suppose $f(x)$ is an even function, continuous, defined for all real numbers. What is $f(0)$? Pick the best answer.
A. $f(0)=f(-0)$
B. $f(0)=-f(0)$
C. $f(0)=0$
D. all of the above are true
E. none of the above are necessarily true

Even more and more Poll tiiiiime

Suppose $f(x)$ is an even function, continuous, defined for all real numbers. What is $f(0)$? Pick the best answer.
A. $f(0)=f(-0)$
B. $f(0)=-f(0)$
C. $f(0)=0$
D. all of the above are true
E. none of the above are necessarily true

OK OK... last one

Suppose $f(x)$ is an even function, differentiable for all real numbers. What can we say about $f^{\prime}(x)$?
A. $f^{\prime}(x)$ is also even
B. $f^{\prime}(x)$ is odd
C. $f^{\prime}(x)$ is constant
D. all of the above are true
E. none of the above are necessarily true

OK OK... last one

Suppose $f(x)$ is an even function, differentiable for all real numbers. What can we say about $f^{\prime}(x)$?
A. $f^{\prime}(x)$ is also even
B. $f^{\prime}(x)$ is odd
C. $f^{\prime}(x)$ is constant
D. all of the above are true
E. none of the above are necessarily true

Periodicity

Periodic
A function is periodic with period P if

$$
f(x)=f(x+P)
$$

whenever x and $x+P$ are in the domain of f, and P is the smallest such (positive) number

Examples: $\sin (x), \cos (x)$ both have period $2 \pi ; \tan (x)$ has period π.

Example: Sketch 8

$$
f(x)=\sin (\sin x)
$$

(ignore concavity)

Example: Sketch 8

$$
f(x)=\sin (\sin x)
$$

(ignore concavity)

Example: Sketch 9

$$
g(x)=\sin (2 \pi \sin x)
$$

Let's Graph

$$
f(x)=\left(x^{2}-64\right)^{1 / 3}
$$

Let's Graph

Example: Sketch 10

$$
f(x)=\left(x^{2}-64\right)^{1 / 3}
$$

$$
f^{\prime}(x)=\frac{2 x}{3\left(x^{2}-64\right)^{2 / 3}} ;
$$

$$
f^{\prime \prime}(x)=\frac{-2\left(\frac{1}{3} x^{2}+64\right)}{3\left(x^{2}-64\right)^{5 / 3}}
$$

Let's Graph

$$
f(x)=\frac{x^{2}+x}{(x+1)\left(x^{2}+1\right)^{2}}
$$

Let's Graph

```
Example: Sketch 11
```

$$
f(x)=\frac{x^{2}+x}{(x+1)\left(x^{2}+1\right)^{2}}
$$

Note for $x \neq-1, f(x)=\frac{x(x+1)}{(x+1)\left(x^{2}+1\right)^{2}}=\frac{x}{\left(x^{2}+1\right)^{2}}$

Let's Graph

```
Example: Sketch 11
```

$$
f(x)=\frac{x^{2}+x}{(x+1)\left(x^{2}+1\right)^{2}}
$$

Note for $x \neq-1, f(x)=\frac{x(x+1)}{(x+1)\left(x^{2}+1\right)^{2}}=\frac{x}{\left(x^{2}+1\right)^{2}}$
Example: Sketch 12

$$
g(x):=\frac{x}{\left(x^{2}+1\right)^{2}}
$$

Let's Graph

Example: Sketch 11

$$
f(x)=\frac{x^{2}+x}{(x+1)\left(x^{2}+1\right)^{2}}
$$

Note for $x \neq-1, f(x)=\frac{x(x+1)}{(x+1)\left(x^{2}+1\right)^{2}}=\frac{x}{\left(x^{2}+1\right)^{2}}$
Example: Sketch 12

$$
g(x):=\frac{x}{\left(x^{2}+1\right)^{2}}
$$

$g^{\prime}(x)=\frac{1-3 x^{2}}{\left(x^{2}+1\right)^{3}} ; g^{\prime \prime}(x)=\frac{12 x\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{4}}$

Let's Graph

$$
f(x)=x(x-1)^{2 / 3}
$$

Match the Function to its Graph

A. $f(x)=\frac{x-1}{(x+1)(x+2)}$
B. $f(x)=\frac{(x-1)^{2}}{(x+1)(x+2)}$
C. $f(x)=\frac{x-1}{(x+1)^{2}(x+2)}$
D. $f(x)=\frac{(x-1)^{2}}{(x+1)^{2}(x+2)}$

Match the Function to its Graph
A. $f(x)=\frac{x-1}{(x+1)(x+2)}$
B. $f(x)=\frac{(x-1)^{2}}{(x+1)(x+2)}$
C. $f(x)=\frac{x-1}{(x+1)^{2}(x+2)}$
D. $f(x)=\frac{(x-1)^{2}}{(x+1)^{2}(x+2)}$

ORANGE

BLUE

GREEN

PURPLE

Match the Function to its Graph

$$
\begin{aligned}
& \text { A. } f(x)=x^{3}(x+2)(x-2)=x^{5}-4 x^{3} \\
& \text { B. } f(x)=x(x+2)^{3}(x-2)=x^{5}+4 x^{4}-16 x^{2}-16 x \\
& \text { C. } f(x)=x(x+2)(x-2)^{3}=x^{5}-4 x^{4}+16 x^{2}-16 x
\end{aligned}
$$

Match the Function to its Graph
A. $f(x)=x^{3}(x+2)(x-2)=x^{5}-4 x^{3}$
B. $f(x)=x(x+2)^{3}(x-2)=x^{5}+4 x^{4}-16 x^{2}-16 x$
C. $f(x)=x(x+2)(x-2)^{3}=x^{5}-4 x^{4}+16 x^{2}-16 x$

PURPLE

Match the Function to its Graph
A. $f(x)=|x|^{e}$
B. $f(x)=e^{|x|}$
C. $f(x)=e^{x^{2}}$
D. $f(x)=e^{x^{4}-x}$

BLACK

ORANGE

BLUE 1

PURPLE

BLUE 2

RED

Match the Function to its Graph
A. $f(x)=x^{5}+15 x^{3}$
D. $f(x)=x^{3}-15 x$
$\begin{array}{ll}\text { B. } f(x)=x^{5}-15 x^{3} & \text { C. } f(x)=x^{5}-15 x^{2}\end{array}$
E. $f(x)=x^{7}-15 x^{4}$

Match the Function to its Graph
A. $f(x)=x^{5}+15 x^{3}$
B. $f(x)=x^{5}-15 x^{3}$
C. $f(x)=x^{5}-15 x^{2}$
D. $f(x)=x^{3}-15 x$
E. $f(x)=x^{7}-15 x^{4}$

