
Chapter 3: Applications of Derivatives 3.1: Rates of Change

The position of a unicyclist along a tightrope is given by

s(t) = t3 − 3t2 − 9t + 10

where s(t) give the distance in meters to the right of the middle of the tightrope, and t
is measured in seconds, −2 ≤ t ≤ 4.

Describe the unicyclist’s motion: when they are moving right or left; when they are
moving fastest and slowest; and how far to the right or left of center they travel.

Image: https://www.flickr.com/photos/frozenhaddock/3947478553

https://www.flickr.com/photos/frozenhaddock/3947478553


Chapter 3: Applications of Derivatives 3.1: Rates of Change

The velocity of the unicyclist is given by

s′(t) = 3t2 − 6t − 9 = 3(t − 3)(t + 1)

Let’s decide where this is positive and negative. It’s a parabola pointing up, with zeroes at t = −1 and t = 3.
So, s′(t) is positive when −2 ≤ t < −1 and 3 < t ≤ 4, so these are the times when the unicyclist is moving
right. They are moving left when −1 < t < 3.
Their rightward speed is 15m/s when t = −2 and t = 4, and this is their fastest rightward speed. The fastest
leftward speed corresponds to the minimum of s′(t). This occurs at the “bottom” of the parabola; to find
where this bottom is, we can either remember that parabolas are symmetric (so it occurs halfway between -1
and 3) or we can notice that the minimum occurs when s′(t) is not decreasing any more, but not yet
increasing: when s′′(t) = 0. Since s′′(t) = 6t − 6, this happens at t = 1, and at t = 1, s′(t) = −12, so the
unicyclist’s fastest leftward speed is 12 m/s.
They are moving the slowest when they switch from left to right motion; at these times, their instantaneous
rate of change is zero, and these occur at t = −1 and t = 3.
It remains to determine how far left and right the unicyclist travels. s(−2) = 8, so they start 8 meters to the
right of center; the continue travelling right until t = −1. s(−1) = 15, so when they turn, they are 15 meters
to the right of center. Then they go left until t = 3. s(3) = −17, so they travel left until they are 17 meters
to the left of center. Then they turn again, and s(4) = −10, so they end up 10 meters to the left of center.
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A solution in a beaker is undergoing a chemical reaction, and its temperature (in degrees
Celsius) at t seconds from noon is given by

T (t) = t3 + 3t2 + 4t − 273

1. When is the reaction increasing the temperature, and when is it decreasing the
temperature?

2. What is the slowest rate of change of the temperature?
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A solution in a beaker is undergoing a chemical reaction, and its temperature (in degrees
Celsius) at t seconds from noon is given by

T (t) = t3 + 3t2 + 4t − 273

1. When is the reaction increasing the temperature, and when is it decreasing the
temperature?

2. What is the slowest rate of change of the temperature?
The temperature is always increasing. To see that, remember that a positive derivative means an increasing
temperature, and a negative derivative means a decreasing temperature.
T ′(t) = 3t2 + 6t + 4. If we try to set T ′(t) = 0, using the quadratic formula, we find the roots are

t =
6 ±

√
36 − 4(3)(4)

6
, which are not real numbers. So, T ′(t) is never zero. Since T ′(t) is a parabola

pointing up, that means it is always positive, so the temperature is always increasing.
To find when it is increasing the slowest, we need to find the minimum value of its rate of change: the
minimum value of T ′(t). Since T ′(t) is a parabola pointing up, its minimum occurs when it’s done decreasing
but not yet increasing: when the derivative of T ′(t) is zero.
T ′′(t) = 6t + 6, so its derivative is zero at t = −1. Then the temperature is changing at

T ′(−1) = 3(−1)2 + 6(−1) + 4 = 1 degree per second.



Chapter 3: Applications of Derivatives 3.1: Rates of Change

You roll a magnetic marble across a countertop towards a metal fridge, giving it an initial
velocity of 50 centimeters per second. The magnet imparts an acceleration on the
magnet of 1 meter per second per second. If the magnet hits the fridge after 2 seconds,
how far away was it when you rolled it?
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We want to know position and velocity, and we know acceleration. Let’s call velocity v(t), where t is measured
in seconds and we start pushing the marble at t = 0. Let’s call position s(t). We need some frame of reference
for s(t), so let’s impose an axis so that s(0) := 0.
Since acceleration is the derivative of velocity, we know v ′(t) = 1. Anything with a constant slope is a line, so
v(t) = t + v0 for some constant v0. Since we start pushing the ball with velocity 1/2 m/s, we must have
v(0) = 1/2, so

v(t) = t + 1/2.

Now consider s(t). Note s′(t) = v(t) = t + 1/2. So we need to think, what function s(t) gives us such a

derivative. The 1/2 part we can get from 1/2t + s0 for some constant s0. We see that d
dx [ 1

2 t
2] = t, so

s(t) = 1
2 t

2 + 1
2 t + s0. Since we defined s(0) = 0, indeed

s(t) =
1

2
t2 +

1

2
t.

Since the ball hits the fridge after 2 seconds, it moved from s(0) = 0 to position s(2) = 1
2 22 + 1

2 (2) = 3. So,
the fridge is three meters from the initial position of the magnet.
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The deceleration of a particular car while braking is 9 m/s2

(according to

http://www.batesville.k12.in.us/physics/phynet/mechanics/kinematics/BrakingDistData.html).

Suppose the car needs to stop in 30m. How fast can it be going?
(Give your answer in kph.)

Suppose the car needs to stop in 50m. How fast can it be going?
(Give your answer in kph.)
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Suppose the car is traveling at v0 kph, and brakes at t = 0. Then

v(t) = v0 − 9t

so it stops at tstop =
v0
9 . We need an expression for how far it’s traveled. Let s(t) be its position at t seconds

after braking, so s(0) = 0. Recall s′(t) = v(t) = v0 − 9t. So by inspection,

s(t) = v0t −
9

2
t2
.

Then when the car stops, it’s traveled s(tstop) meters.

s(tstop) = s

(
v0

9

)
= v0

(
v0

9

)
−

9

2

(
v0

9

)2

=
v2

0

18

So, to stop in 30 m, we solve
v2

0

18
= 30

which tells us the car can only travel at most about 23.238 m/s. We convert to kph:

23.238
m

s

(
1 km

1000m

)(
3600s

1hr

)
≈ 84kph

To stop in 50 m, we solve
v2

0

18
= 50

which yields v0 = 30m/s, or

30
m

s

(
1 km

1000m

)(
3600s

1hr

)
= 108kph
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Suppose your brakes decelerate your car at a constant rate. That is, d meters per second
per second, for some constant d .
Is it true that if you double your speed, you double your stopping time?
Is is true that if you double your speed, you double your stopping distance?
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You double your stopping time, but QUADRUPLE your stopping distance.

As in the last example, if you brake at time t = 0 from a speed of v0 m/s, then
v(t) = v0 − dt gives your velocity while decelerating. Then the time you stop is when
v(t) = 0, and this occurs at tstop = v0

d
.

Notice: if we replace v0 with 2v0, then tstop doubles. So doubling your speed does indeed
double your stopping time.

Your position while stopping is given by s(t) = v0t − d
2
t2. Your stopping distance is

s(tstop) = s
(
v0
d

)
=

v2
0

2d
. So if you replace v0 with 2v0, your stopping distance goes up by a

factor of 4: it quadruples.


