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Algebra Mistake AM
Creative Strategy! CS

Write your Name WYN
Use a Logarithm LOG
Please don’t submit papers with coffee stains CS

The longer code is not uniquely translatable; viewed as a function, it is not invertible.
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Let f be an invertible function.
What is f −1(f (x))?

A. x

B. 1

C. 0

D. not sure

What is f (f −1(x))?

A. x

B. 1

C. 0

D. not sure



Review 0.6 Inverse Functions

Relationship between f (x) and f −1(x)

Let f be an invertible function.
What is f −1(f (x))?

A. x
B. 1
C. 0
D. not sure

domain range

f (x)

f −1(x)

5 25

What is f (f −1(x))?

A. x
B. 1
C. 0
D. not sure



Review 0.6 Inverse Functions

Relationship between f (x) and f −1(x)

Let f be an invertible function.
What is f −1(f (x))?

A. x
B. 1
C. 0
D. not sure

domain range

f (x)

f −1(x)

5 25

What is f (f −1(x))?

A. x
B. 1
C. 0
D. not sure



Review 0.6 Inverse Functions

Relationship between f (x) and f −1(x)

Let f be an invertible function.
What is f −1(f (x))?

A. x

B. 1

C. 0

D. not sure

What is f (f −1(x))?

A. x

B. 1

C. 0

D. not sure



Review 0.6 Inverse Functions

Relationship between f (x) and f −1(x)

Let f be an invertible function.
What is f −1(f (x))?

A. x

B. 1

C. 0

D. not sure

What is f (f −1(x))?

A. x

B. 1

C. 0

D. not sure
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Invertibility

In order for a function to be invertible

, different x values cannot map to the same y
value.
We call such a function one-to-one, or injective.

Suppose f (x) = 3
√

19 + x3. What is f −1(3)? (simplify your answer)

f (2) = 3, so f −1(3) = 2

What is f −1(10)? (do not simplify)

3
√

19 + y 3 = 10 tells us f −1(10) = 3
√

103 − 19

What is f −1(x)?

3
√

19 + y 3 = x tells us f −1(x) = 3
√
x3 − 19
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Review 0.6 Inverse Functions

Example

Let f (x) = x2 − x .

1. Sketch a graph of f (x), and choose a domain over which it is invertible.

For instance, (1/2,∞)

2. For the domain you chose, evaluate f −1(20).

This is a number y such that y 2 − y = 20. So y is either −4 or 5, depending on your
choice of domain.

3. For the domain you chose, evaluate f −1(x).

x = y 2 − y ⇒ y 2 − 1y − x = 0 ⇒ 1±
√

1+4x
2

, with plus or minus depending on
domain chosen

4. What are the domain and range of f −1(x)? What are the (restricted) domain and
range of f (x)?
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Exponents and Logarithms

f (x) = ex f −1(x) = ln(x) = log(x)

So, ln(ex) = x and e ln x = x .

x ex

ln fact ↔ e fact

0 1

ln(1) = 0 ↔ e0 = 1

1 e

ln(e) = 1 ↔ e1 = e

−1 1
e

ln( 1
e

) = −1 ↔ e−1 = 1
e

n en

ln(en) = n ↔ en = en

ln(1) = 0

ln(e) = 1

ln( 1
e

) = −1

ln(en) = n
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Logs of Other Bases

log10 108 =

A. 0

B. 8

C. 10

D. other

E. I’m not sure

log2 16 =

A. 1

B. 2

C. 3

D. other

: 24 = 16 so log2 16 = 4

E. I’m not sure
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https://xkcd.com/1162/

Log scale in action: https://xkcd.com/482/

https://xkcd.com/1162/
https://xkcd.com/482/


Review A.13 Logarithms

Decibels: For a particular measure of the
power P of a sound wave, the decibels of
that sound is:

10 log10(P)

So, every ten decibels corresponds to a
sound being ten times louder.

A lawnmower emits a 100dB sound. How
much sound will two lawnmowers make?

A. 100 dB

B. 110 dB

C. 200 dB

D. other

: more than 100, less than 110

E. I’m not sure

http://biology-forums.com/index.php?action=gallery;sa=view;id=6156

http://biology-forums.com/index.php?action=gallery;sa=view;id=6156
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Review A.13 Logarithms

Logarithm Rules

Let A and B be positive, and let n be any real number.

ln(A · B) = ln(A) + ln(B)
Proof: ln(A · B) = ln(e ln Ae ln B) = ln(e ln A+ln B) = ln(A) + ln(B)
ln(A/B) = ln(A)− ln(B)

Proof: ln(A/B) = ln
(

e ln A

e ln B

)
= ln(e ln A−ln B) = lnA− lnB

ln(An) = n ln(A)
Proof: ln(An) = ln

((
e ln A

)n)
= ln

(
en ln A

)
= n lnA

Simplify into a single logarithm:

f (x) = ln

(
10

x2

)
+ 2 ln x + ln(10 + x)

f (x) = ln

(
10

x2

)
+ 2 ln x + ln(10 + x)

= ln 10− ln(x2) + 2 ln x + ln(10 + x)

= ln 10− 2 ln x + 2 ln x + ln(10 + x)

= ln 10 + ln(10 + x)
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Review A.13 Logarithms

Base Change

blogb(a) = a

⇒ ln(blogb(a)) = ln(a)

⇒ logb(a) ln(b) = ln(a)

⇒ logb(a) =
ln(a)

ln(b)

In general, for positive a, b, and c:

logb(a) =
logc(a)

logc(b)
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Base Change

In general, for positive a, b, and c:

logb(a) =
logc(a)

logc(b)

Suppose your calculator can only compute logarithms base 10. What would you enter to
calculate ln(17)?

log10 17
log10 e

Suppose your calculator can only compute natural logarithms. What would you enter to
calculate log2(57)?

ln 57
ln 2

Suppose your calculator can only compute logarithms base 2. What would you enter to
calculate ln(2)?

log2 2
log2 e

= 1
log2 e
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Chapter 2: Differentiation 2.10 The Natural Logarithm

Differentiating the Natural Logarithm

Calculate d
dx
{ln x}.

Derivative of Natural Logarithm

d

dx
{ln x} =

1

x
(x > 0)

d

dx
{ln |x |} =

1

x
(x 6= 0)

One Weird Trick:

x = e ln x

d

dx
{x} =

d

dx

{
e ln x

}
1 = e ln x · d

dx
{ln x}

1 = x · d

dx
{ln x}

1

x
=

d

dx
{ln x}



Chapter 2: Differentiation 2.10 The Natural Logarithm

Differentiating the Natural Logarithm

Calculate d
dx
{ln x}.

Derivative of Natural Logarithm

d

dx
{ln x} =

1

x
(x > 0)

d

dx
{ln |x |} =

1

x
(x 6= 0)

One Weird Trick:

x = e ln x

d

dx
{x} =

d

dx

{
e ln x

}
1 = e ln x · d

dx
{ln x}

1 = x · d

dx
{ln x}

1

x
=

d

dx
{ln x}



Chapter 2: Differentiation 2.10 The Natural Logarithm

Differentiating the Natural Logarithm

Calculate d
dx
{ln x}.

Derivative of Natural Logarithm

d

dx
{ln x} =

1

x
(x > 0)

d

dx
{ln |x |} =

1

x
(x 6= 0)

One Weird Trick:

x = e ln x

d

dx
{x} =

d

dx

{
e ln x

}
1 = e ln x · d

dx
{ln x}

1 = x · d

dx
{ln x}

1

x
=

d

dx
{ln x}



Chapter 2: Differentiation 2.10 The Natural Logarithm

Differentiating the Natural Logarithm

Calculate d
dx
{ln x}.

Derivative of Natural Logarithm

d

dx
{ln x} =

1

x
(x > 0)

d

dx
{ln |x |} =

1

x
(x 6= 0)

One Weird Trick:

x = e ln x

d

dx
{x} =

d

dx

{
e ln x

}
1 = e ln x · d

dx
{ln x}

1 = x · d

dx
{ln x}

1

x
=

d

dx
{ln x}



Chapter 2: Differentiation 2.10 The Natural Logarithm

Differentiating the Natural Logarithm

Calculate d
dx
{ln x}.

Derivative of Natural Logarithm

d

dx
{ln x} =

1

x
(x > 0)

d

dx
{ln |x |} =

1

x
(x 6= 0)

One Weird Trick:

x = e ln x

d

dx
{x} =

d

dx

{
e ln x

}
1 = e ln x · d

dx
{ln x}

1 = x · d

dx
{ln x}

1

x
=

d

dx
{ln x}



Chapter 2: Differentiation 2.10 The Natural Logarithm

Differentiating the Natural Logarithm

Calculate d
dx
{ln x}.

Derivative of Natural Logarithm

d

dx
{ln x} =

1

x
(x > 0)

d

dx
{ln |x |} =

1

x
(x 6= 0)

One Weird Trick:

x = e ln x

d

dx
{x} =

d

dx

{
e ln x

}
1 = e ln x · d

dx
{ln x}

1 = x · d

dx
{ln x}

1

x
=

d

dx
{ln x}



Chapter 2: Differentiation 2.10 The Natural Logarithm

Derivative of Natural Logarithm

d

dx
{ln |x |} =

1

x
(x 6= 0)

Differentiate: f (x) = ln | cot x |

We use the chain rule:

d

dx

{
ln
∣∣∣ cot x

∣∣∣} =
1

cot x
·
(
− csc2 x

)
=
− csc2 x

cot x
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Logarithmic Differentiation

Logarithmic Differentiation

In general, if f (x) 6= 0,
d

dx
{ln |f (x)|} =

f ′(x)

f (x)
.

f (x) =
(x2 + 17)(32x10 − 8)

sin x + 2

Find f ′(x).

http://sliderulemuseum.com/SR_Course.htm

http://sliderulemuseum.com/SR_Course.htm
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f (x) =
(x2 + 17)(32x10 − 8)

sin x + 2

(x2 + 17)(32x10 − 8)

sin x + 2
= y

ln

∣∣∣∣∣ (x2 + 17)(32x10 − 8)

sin x + 2

∣∣∣∣∣ = ln |y| ln both sides

ln |x2 + 17| + ln |32x10 − 8| − ln | sin x + 2| = ln |y| log rules

d

dx

[
ln |x2 + 17| + ln |32x10 − 8| − ln | sin x + 2|

]
=

d

dx
[ln |y|] differentiate

2x

x2 + 17
+

320x9

32x10 − 8
−

cos x

sin x
=

y′

y

y

(
2x

x2 + 17
+

320x9

32x10 − 8
−

cos x

sin x + 2

)
= y′

(
2x

x2 + 17
+

320x9

32x10 − 8
−

cos x

sin x + 2

)
·

(x2 + 17)(32x10 − 8)

sin x + 2
= y′ plug in y
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Logarithmic Differentiation

f (x) =
(x8 − ex)(

√
x + 5)

csc5 x

(x8 − ex)(
√
x + 5)

csc5 x
= y

ln

∣∣∣∣ (x8 − ex)(
√
x + 5)

csc5 x

∣∣∣∣ = ln |y |[
ln |x8 − ex |+ ln |x1/2 + 5| − 5 ln | csc x |

]
= ln |y |

d

dx

[
ln |x8 − ex |+ ln |x1/2 + 5| − 5 ln | csc x |

]
=

d

dx
ln |y |

8x7 − ex

x8 − ex
+

1
2
x−1/2

x1/2 + 5
− 5
− csc x cot x

csc x
=

y ′

y

(x8 − ex)(
√
x + 5)

csc5 x

(
8x7 − ex

x8 − ex
+

1
2
x−1/2

x1/2 + 5
− 5
− csc x cot x

csc x

)
= y ′
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Logarithmic Differentiation

f (x) = (x2 + 17)(32x5 − 8)(x98 − x57 + 32x2)4(32x10 − 10x32)

Find f ′(x).

(x2 + 17)(32x5 − 8)(x98 − x57 + 32x2)4(32x10 − 10x32) = y

ln
∣∣∣(x2 + 17)(32x5 − 8)(x98 − x57 + 32x2)4(32x10 − 10x32)

∣∣∣ = ln |y |

ln |x2 + 17| + ln |32x5 − 8| + 4 ln |x98 − x57 + 32x4| + ln |32x10 − 10x32| = ln y

d

dx

[
ln |x2 + 17| + ln |32x5 − 8| + 4 ln |x98 − x57 + 32x4| + ln |32x10 − 10x32|

]
=

d

dx
[ln y ]

2x

x2 + 17
+

160x4

32x5 − 8
+ 4

98x97 − 57x56 + 64x

x98 − x57 + 32x2
+

320x9 − 320x31

32x10 − 10x32
=

y ′

y(
(x2 + 17)(32x5 − 8)(x98 − x57 + 32x2)4(32x10 − 10x32)

)
·(

2x

x2 + 17
+

160x4

32x5 − 8
+ 4

98x97 − 57x56 + 64x

x98 − x57 + 32x2
+

320x9 − 320x31

32x10 − 10x32

)
= y ′
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Logarithmic Differentiation

Let f (x) = xcos x , where x ≥ 0.

Do the local peaks occur where cos x = 1?
First, find the derivative.

xcos x = y

ln (xcos x) = ln y

cos x ln x = ln y

d

dx
[cos x ln x ] =

d

dx
[ln y ]

cos x
1

x
+ ln x(− sin x) =

y ′

y

cos x

x
− ln x sin x =

y ′

y

y
(cos x

x
− ln x sin x

)
= y ′

xcos x
(cos x

x
− ln x sin x

)
= y ′
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If the peaks occur when cos x = 1, then the derivative should be zero there. In particular,
cos x = 1 when x = 2πn. Then:

f ′(2πn) = (2πn)1

(
1

2πn
− ln(2πn) sin(2πn)

)
= 2πn

(
1

2πn
− 0

)
= 1 6= 0

So the peaks do NOT occur exactly at the places where cos x = 1.
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Logarithmic Differentiation

Find the derivative of xx .

xx = y

ln(xx) = ln y

x ln x = ln y

x · 1

x
+ ln x =

y ′

y

1 + ln x =
y ′

y

y ′ = y(1 + ln x) = xx(1 + ln x)
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x2 + y2 = 1

x

y

a x

∆x

∆y

y2

y1

Compare:

lim
x→a

f (x)− f (a)

x − a

lim
x→a

y1 − y2

x − a
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x2 + y2 = 1

Find the slope of the tangent line to the unit circle at point (x , y).
Verify your answer by determining when the tangent line is horizontal and when it is
vertical.

x

y

x2 + y 2 = 1 ⇒ d
dx

[
x2 + y 2

]
= d

dx
[1]

⇒ 2x + 2y dy
dx

= 0 ⇒ 2y dy
dx

= −2x

⇒ dy
dx

= − x
y

So, dy
dx

is 0 when x = 0 and undefined when y = 0. This fits with the picture.
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x2y + y 2x = 1

First, find dy
dx

, and where it doesn’t exist.
d
dx

[x2y + y 2x ] = d
dx

[1]

(x2) dy
dx

+ y(2x) + y 2(1) + x
(
2y dy

dx

)
= 0

dy
dx

[
x2 + 2xy

]
= −2xy − y 2

dy
dx

=
−2xy − y 2

x2 + 2xy
This doesn’t exist when x2 + 2xy = 0, that is, when x(x + 2y) = 0, so when x = 0 or
x = 2y . Notice though, then x = 0, the function is undefined. So our only candidate is
when x = −2y .
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x2y + y 2x = 1

x = −2y

Now, find the point on the curve corresponding to the bump.
(−2y)2y + y 2(−2y) = 1⇒ 2y 3 = 1⇒ y = 1

3√2

and then find x :
x = −2y = −2

3√2
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x = −2y

Now, find the point on the curve corresponding to the bump.
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and then find x :
x = −2y = −2
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exy = x2 + y3

Find the equation of the tangent line to the curve exy = x2 + y 3 when x = 0.
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exy = x2 + y 3

e
xy ·

[
x
dy

dx
+ y(1)

]
= 2x + 3y 2 dy

dx

dy

dx

[
xexy − 3y 2

]
= 2x − yexy

dx

dy
=

2x − yexy

xexy − 3y 2

So, when x = 0, dy
dx

= −y
−3y2 = 1

3y
. So, we need to figure out what y is.

e0·y = 02 + y 3 ⇒ 1 = y 3 ⇒ y = 1
so the point is (0, 1) and the slope is 1/3. Then the tangent line is:

(y − 1) = −1/3x
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Folium of Descartes

Using the graph, approximate the
coordinates of the curve where the
tangent line is horizontal.

Find the exact coordinates where the tangent line
is horizontal.
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Folium of Descartes

x3 + y 3 = 3xy

Using the graph, approximate the coordinates of the curve where the tangent line is
horizontal.
It looks like one arm of the graph is horizontal at (0, 0), and also when x ≈ 1.25 and y ≈ 1.6.
To find out for sure, let’s take the derivative.

x3 + y3 = 3xy ⇒
d

dx
[x3 + y3] =

d

dx
3xy

3x2 + 3y2 dy

dx
= 3(x

dy

dx
+ y) 3y2 dy

dx
− 3x

dy

dx
= 3y − 3x2

dy

dx
(3y2 − 3x) = 3y − 3x2 dy

dx
=

3y − 3x2

3y2 − 3x
=

y − x2

x − y2

So we can expect the tangent line to be horizontal whenever y = x2, except possibly when also x = y2. If we plug y = x2 into the equation to find out
when that happens:

x3 + y3 = 3xy x3 + (x2)3 = 3x(x2)

x3 + x6 = 3x3 x3(x3 − 2) = 0

So, if x = 0 (and y = 02 = 0) or x = 3√2 (and y = 3√4), we might expect to see a horizontal tangent.
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y 2 = 3x3 + 9x2

Where is tangent line to this curve horizontal? Where vertical?
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y 3 = x2y − x4

Where might this curve have a vertical tangent line?
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y 3 = x2y − x4

Where might this curve have a vertical tangent line?
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y 3 = x2y − x4

3y 2 dy

dx
= (x2)

dy

dx
+ y(2x)− 4x3

3y 2 dy

dx
− x2 dy

dx
= 2xy − 4x3

(3y 2 − x2)
dy

dx
= 2xy − 4x3

dy

dx
=

2xy − 4x3

3y 2 − x2

This derivative doesn’t exist when the denominator is zero, which happens when
3y 2 = x2. Plugging this into the original equation, that means:

y 3 = (3y 2)y − (3y 2)2 ⇒ 0 = y 3(2− 9y)

so y = 0 or y = 2/9. If y = 0 then x = 0, and both the top and bottom of the derivative
are zero: so we don’t know what it looks like. Suppose y = 2/9, so x = ±2

√
3/9. Then

the denominator is zero, and the numerator is some number; so as x and y get close to
these numbers, the slope of the tangent line grows. So these are vertical tangent lines.
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arcsine

x

y

y = sin x

The function f (x) = sin(x) is invertible over the domain
[
−π

2
, π

2

]
, and this is the domain

we use to define arcsin(x).

arcsin(x) gives the number y such that:
(1) sin(y) = x and

←←← inverse

(2) −π
2
≤ y ≤ π

2

←←← function

What is arcsin(sin 0)?

0

What is arcsin
(
sin 3π

2

)
?

−π
2
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arccosine

x

y
y = cos x

The function f (x) = cos(x) is invertible over the domain [0, π], and this is the domain we
use to define arccos(x).

arccos(x) gives the number y such that:
(1) cos(y) = x and

←←← inverse

(2) 0 ≤ y ≤ π

←←← function

arccos
(
cos 5π

4

)
=

arccos
(
cos 3π

4

)
= 3π

4

tan (arccos x) =

√
1− x2

x



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

arccosine

x

y
y = cos x

The function f (x) = cos(x) is invertible over the domain [0, π], and this is the domain we
use to define arccos(x).

arccos(x) gives the number y such that:
(1) cos(y) = x and

←←← inverse

(2) 0 ≤ y ≤ π

←←← function

arccos
(
cos 5π

4

)
=

arccos
(
cos 3π

4

)
= 3π

4

tan (arccos x) =

√
1− x2

x



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

arccosine

x

y
y = cos x

The function f (x) = cos(x) is invertible over the domain [0, π], and this is the domain we
use to define arccos(x).

arccos(x) gives the number y such that:
(1) cos(y) = x and

←←← inverse

(2) 0 ≤ y ≤ π

←←← function

arccos
(
cos 5π

4

)
=

arccos
(
cos 3π

4

)
= 3π

4

tan (arccos x) =

√
1− x2

x



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

arccosine

x

y
y = cos x

The function f (x) = cos(x) is invertible over the domain [0, π], and this is the domain we
use to define arccos(x).

arccos(x) gives the number y such that:
(1) cos(y) = x and ←←← inverse
(2) 0 ≤ y ≤ π

←←← function

arccos
(
cos 5π

4

)
=

arccos
(
cos 3π

4

)
= 3π

4

tan (arccos x) =

√
1− x2

x



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

arccosine

x

y
y = cos x

The function f (x) = cos(x) is invertible over the domain [0, π], and this is the domain we
use to define arccos(x).

arccos(x) gives the number y such that:
(1) cos(y) = x and ←←← inverse
(2) 0 ≤ y ≤ π ←←← function

arccos
(
cos 5π

4

)
=

arccos
(
cos 3π

4

)
= 3π

4

tan (arccos x) =

√
1− x2

x



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

arccosine

x

y
y = cos x

The function f (x) = cos(x) is invertible over the domain [0, π], and this is the domain we
use to define arccos(x).

arccos(x) gives the number y such that:
(1) cos(y) = x and ←←← inverse
(2) 0 ≤ y ≤ π ←←← function

arccos
(
cos 5π

4

)
=

arccos
(
cos 3π

4

)
= 3π

4

tan (arccos x) =

√
1− x2

x



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

arccosine

x

y
y = cos x

The function f (x) = cos(x) is invertible over the domain [0, π], and this is the domain we
use to define arccos(x).

arccos(x) gives the number y such that:
(1) cos(y) = x and ←←← inverse
(2) 0 ≤ y ≤ π ←←← function

arccos
(
cos 5π

4

)
= arccos

(
cos 3π

4

)
= 3π

4

tan (arccos x) =

√
1− x2

x



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

arccosine

x

y
y = cos x

The function f (x) = cos(x) is invertible over the domain [0, π], and this is the domain we
use to define arccos(x).

arccos(x) gives the number y such that:
(1) cos(y) = x and ←←← inverse
(2) 0 ≤ y ≤ π ←←← function

arccos
(
cos 5π

4

)
= arccos

(
cos 3π

4

)
= 3π

4

tan (arccos x) =

√
1− x2

x



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

arctangent

x

y

y = tan(x)

arctan(x) = y means: (1) tan(y) = x and (2) π/2 < y < π/2
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arcsecant, arcsine, and arccotangent

arcsec(x) = y

sec(y) = x
1

cos(y)
= x

cos(y) = 1
x

y = arccos

(
1

x

)
Domain of arccos(x) is
−1 ≤ x ≤ 1, so domain
of arcsec(x) is
(−∞,−1] ∪ [1,∞).

arccsc(x) = y

csc(y) = x
1

sin(y)
= x

sin(y) = 1
x

y = arcsin

(
1

x

)
Domain of arcsin(x) is
−1 ≤ x ≤ 1, so domain
of arccsc(x) is
(−∞,−1] ∪ [1,∞).

arccot(x) = y

cot(y) = x
1

tan(y)
= x

tan(y) = 1
x

y = arctan

(
1

x

)
Domain of arctan(x) is
all real numbers, so
domain of arccot(x) is
(−∞, 0) ∪ (0,∞).
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Derivative of arctan(x)

y = arctan x

Find dy
dx

.

y = arctan x

x = tan y

d

dx
[x] =

d

dx
[tan y ]

1 = sec2 y ·
dy

dx

dy

dx
= cos2y

dy

dx
=

(
adj

hyp

)2

=

(
1

√
1 + x2

)2

=
1

|1 + x2|
=

1

1 + x2

y

x

1

√
1 + x2
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Derivative of arccos(x)
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Find dy
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dx
[x] =

d

dx
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1 = − sin y ·
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dy

dx
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sin y

dy

dx
=
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opp

=
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√
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y

√
1− x2

x
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Derivative of arcsin(x)

y = arcsin x
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Derivatives of other inverse functions

To differentiate arcsecant, arccosecant, and arccotangent, you can use the chain rule!

d

dx
{arccsc(x)} =

d

dx

{
arcsin

(
1

x

)}
=

d

dx

{
arcsin

(
x−1
)}

d

dx

{
arcsin

(
x−1

)}
=

1√
1−

(
x−1

)2
·
(
−x−2

)

=
−1

x2
√

1− x−2
=

−1√
x4
√

1− x−2

=
−1√

x2
√
x2
√

1− x−2
=

−1√
x2
√
x2 − 1

=
−1

|x |
√
x2 − 1
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Derivatives of Inverse Trig Functions

Derivatives of Inverse Trig Functions

Memorize Figure Out

d

dx
{arcsin x} =

1√
1− x2

d

dx
{arccscx} =

d

dx

{
arcsin

(
x−1
)}

d

dx
{arccos x} =

−1√
1− x2

d

dx
{arcsecx} =

d

dx

{
arccos

(
x−1
)}

d

dx
{arctan x} =

1

1 + x2

d

dx
{arccotx} =

d

dx

{
arctan

(
x−1
)}

Evaluate:

lim
x→∞

arctan x

=
π

2

lim
x→∞

(
d

dx
{arctan x}

)

= 0

lim
x→−1+

arcsin x

= −π
2

lim
x→−1+

(
d

dx
{arcsin x}

)

=∞



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

Derivatives of Inverse Trig Functions

Derivatives of Inverse Trig Functions

Memorize Figure Out

d

dx
{arcsin x} =

1√
1− x2

d

dx
{arccscx} =

d

dx

{
arcsin

(
x−1
)}

d

dx
{arccos x} =

−1√
1− x2

d

dx
{arcsecx} =

d

dx

{
arccos

(
x−1
)}

d

dx
{arctan x} =

1

1 + x2

d

dx
{arccotx} =

d

dx

{
arctan

(
x−1
)}

Evaluate:

lim
x→∞

arctan x

=
π

2

lim
x→∞

(
d

dx
{arctan x}

)

= 0

lim
x→−1+

arcsin x

= −π
2

lim
x→−1+

(
d

dx
{arcsin x}

)

=∞



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

Derivatives of Inverse Trig Functions

Derivatives of Inverse Trig Functions

Memorize Figure Out

d

dx
{arcsin x} =

1√
1− x2

d

dx
{arccscx} =

d

dx

{
arcsin

(
x−1
)}

d

dx
{arccos x} =

−1√
1− x2

d

dx
{arcsecx} =

d

dx

{
arccos

(
x−1
)}

d

dx
{arctan x} =

1

1 + x2

d

dx
{arccotx} =

d

dx

{
arctan

(
x−1
)}

Evaluate:

lim
x→∞

arctan x =
π

2

lim
x→∞

(
d

dx
{arctan x}

)

= 0

lim
x→−1+

arcsin x

= −π
2

lim
x→−1+

(
d

dx
{arcsin x}

)

=∞



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

Derivatives of Inverse Trig Functions

Derivatives of Inverse Trig Functions

Memorize Figure Out

d

dx
{arcsin x} =

1√
1− x2

d

dx
{arccscx} =

d

dx

{
arcsin

(
x−1
)}

d

dx
{arccos x} =

−1√
1− x2

d

dx
{arcsecx} =

d

dx

{
arccos

(
x−1
)}

d

dx
{arctan x} =

1

1 + x2

d

dx
{arccotx} =

d

dx

{
arctan

(
x−1
)}

Evaluate:

lim
x→∞

arctan x =
π

2

lim
x→∞

(
d

dx
{arctan x}

)
= 0

lim
x→−1+

arcsin x

= −π
2

lim
x→−1+

(
d

dx
{arcsin x}

)

=∞



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

Derivatives of Inverse Trig Functions

Derivatives of Inverse Trig Functions

Memorize Figure Out

d

dx
{arcsin x} =

1√
1− x2

d

dx
{arccscx} =

d

dx

{
arcsin

(
x−1
)}

d

dx
{arccos x} =

−1√
1− x2

d

dx
{arcsecx} =

d

dx

{
arccos

(
x−1
)}

d

dx
{arctan x} =

1

1 + x2

d

dx
{arccotx} =

d

dx

{
arctan

(
x−1
)}

Evaluate:

lim
x→∞

arctan x =
π

2

lim
x→∞

(
d

dx
{arctan x}

)
= 0

lim
x→−1+

arcsin x = −π
2

lim
x→−1+

(
d

dx
{arcsin x}

)

=∞



Chapter 2: Differentiation 2.12 Inverse Trigonometric Functions

Derivatives of Inverse Trig Functions

Derivatives of Inverse Trig Functions

Memorize Figure Out

d

dx
{arcsin x} =

1√
1− x2

d

dx
{arccscx} =

d

dx

{
arcsin

(
x−1
)}

d

dx
{arccos x} =

−1√
1− x2

d

dx
{arcsecx} =

d

dx

{
arccos

(
x−1
)}

d

dx
{arctan x} =

1

1 + x2

d

dx
{arccotx} =

d

dx

{
arctan

(
x−1
)}

Evaluate:

lim
x→∞

arctan x =
π

2

lim
x→∞

(
d

dx
{arctan x}

)
= 0

lim
x→−1+

arcsin x = −π
2

lim
x→−1+

(
d

dx
{arcsin x}

)
=∞



Chapter 2: Differentiation 2.13 Mean Value Theorem

Rolle’s Theorem

x

y



Chapter 2: Differentiation 2.13 Mean Value Theorem

Rolle’s Theorem

Let a and b be real numbers, with a < b. And let f be a function with the properties:

•

f (x) is continuous for every x with a ≤ x ≤ b;

•

f (x) is differentiable for every x with a < x < b;

• and f (a) = f (b).

Then there exists a number c with a < c < b such that

f ′(c) = 0.
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Rolle’s Theorem

x

y

a b

Suppose a < b and f (a) = f (b), f (x) is continuous over [a, b], and f (x) is differentiable
over (a, b).

How many different values of x between a and b have f ′(x) = 0?

A. 0 or 1

B. 1

C. 0, 1, or more

D. 1 or more

E. I’m not sure
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Suppose a < b and f (a) = f (b), f (x) is continuous over [a, b], and f (x) is differentiable
over (a, b).

Can f have an infinte number of points where f ′(x) = 0 between a and b?

A. Sure! :D

B. No way! >:-[

C. Only if a and b are infinitely far apart

D. I’m not sure
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Rolle’s Theorem

Let a and b be real numbers, with a < b. And let f be a function with the properties:

• f (x) is continuous for every x with a ≤ x ≤ b;

• f (x) is differentiable for every x with a < x < b;

• and f (a) = f (b).

Then there exists a number c with a < c < b such that

f ′(c) = 0.
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C. at most seven

D. at least six
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B. at most four

C. at least three

D. at least four

E. I don’t know



Chapter 2: Differentiation 2.13 Mean Value Theorem

What’s the Use?

Prove that the function f (x) = x3 + x − 1 has at most one real root.

To prove this logically, we assume our assumption is false. That is, we assume f (x) does
not have at most one real root: this means it has at least two.

Note that f (x) is continuous and differentiable over all real numbers. So, by Rolle’s
Theorem, if it has two roots, then f ′(x) = 0 for some x .

f ′(x) = 3x2 + 1, and this is always positive, so it’s never zero. Therefore, by Rolle’s
Theorem, f (x) does not have two roots; so it has at most one.

Logical Structure:

• If A is true, then B is true.
• B is false.
• Therefore, A is false.

• If f (x) has two (or more) roots, then
f ′(x) has a root.
• f ′(x) does not have a root.
• Therefore, f (x) does not have two (or
more) roots.
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Show that the function f (x) = 1
3
x3 + 3x2 + 9x − 3 has at most two real roots.

Again we use the structure:

• If f (x) has three roots, then f ′(x) has two roots.
• f ′(x) does not have two roots.
• Therefore, f (x) does not have three roots.

So, all we need to do is make sure the conditions of Rolle’s Theorem are satisfied, and
show that f ′(x) does not have three roots.

Since f (x) is continuous and differentiable over all real numbers, the conditions of Rolle’s
Theorem are satisfied.

f ′(x) = x2 + 6x + 9 = (x + 3)2, which only has ONE root.

Therefore, f ′(x) does not have two roots, so f (x) does not have three roots.

So, f (x) has at most two roots.
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Show that the function f (x) = 1
4
x4 + x + 9 has at most two real roots.

Again we use the structure:

• If f (x) has three roots, then f ′(x) has two roots.
• f ′(x) does not have two roots.
• Therefore, f (x) does not have three roots.

So, all we need to do is make sure the conditions of Rolle’s Theorem are satisfied, and
show that f ′(x) does not have three roots.

Since f (x) is continuous and differentiable over all real numbers, the conditions of Rolle’s
Theorem are satisfied.

f ′(x) = x3 + 1, which only has ONE root.

Therefore, f ′(x) does not have two roots, so f (x) does not have three roots.

So, f (x) has at most two roots.
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Average Rate of Change

x

y

1 3

5

3

1

What is the average rate of change of f (x) from x = 1 to x = 3?

A. 0

∆y
∆x

= 3−3
3−1

= 0
2

= 0

B. 1

C. 2

D. 4

E. I’m not sure



Chapter 2: Differentiation 2.13 Mean Value Theorem

Average Rate of Change

x

y

1 3

5

3

1

What is the average rate of change of f (x) from x = 1 to x = 3?

A. 0

∆y
∆x

= 3−3
3−1

= 0
2

= 0

B. 1

C. 2

D. 4

E. I’m not sure



Chapter 2: Differentiation 2.13 Mean Value Theorem

Average Rate of Change

x

y

1 3

5

3

1

What is the average rate of change of f (x) from x = 1 to x = 3?

A. 0 ∆y
∆x

= 3−3
3−1

= 0
2

= 0

B. 1

C. 2

D. 4

E. I’m not sure



Chapter 2: Differentiation 2.13 Mean Value Theorem

Average Rate of Change

x

y

1 3

5

3

1

What is the average rate of change of f (x) from x = 1 to x = 3?

A. 0 ∆y
∆x

= 3−3
3−1

= 0
2

= 0

B. 1

C. 2

D. 4

E. I’m not sure



Chapter 2: Differentiation 2.13 Mean Value Theorem

Average Rate of Change
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What is the average rate of change of f (x) from x = 2 to x = 7?
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7−2
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C. 5

D. 15
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Rolle’s Theorem and Average Rate of Change

Suppose f (x) is continuous on the interval [a, b], differentiable on the interval (a, b), and
f (a) = f (b). Then there exists a number c between a and b so that

f ′(c) = 0 =
f (b)− f (a)

b − a
.

So there exists a point where the derivative is the same as the average rate of change.



Chapter 2: Differentiation 2.13 Mean Value Theorem

Rolle’s Theorem and Average Rate of Change

Suppose f (x) is continuous on the interval [a, b], differentiable on the interval (a, b), and
f (a) = f (b). Then there exists a number c between a and b so that

f ′(c) = 0 =
f (b)− f (a)

b − a
.

So there exists a point where the derivative is the same as the average rate of change.
For example, think of throwing a ball straight up, and catching it.
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Mean Value Theorem

Let f (x) be continuous on the interval [a, b] and differentiable on (a, b). Then there is a
number c between a and b such that:

f ′(c) =
f (b)− f (a)

b − a

That is: there is some point c between a and b where the instantaneous rate of change of
the function is equal to the average rate of change of the function on the interval [a, b].

Rolle’s Theorem

Let f (x) be continuous on the interval [a, b], differentiable on (a, b), and let f (a) = f (b).
Then there is a number c between a and b such that:
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Suppose you are driving along a long, straight highway with no shortcuts. The speed
limit is 100 kph. A police officer notices your car going 90 kph, and uploads your plate
and the time they saw you to their database. 150 km down this same straight road, 75
minutes later, another police officer notices your car going 85kph, and uploads your
plates to the database. Then they pull you over, and give you a speeding ticket. Why
were they justified?

link, Wikimedia commons, creative commons

https://commons.wikimedia.org/wiki/File:RCMP_Police_Interceptor.jpg
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Suppose you are driving along a long, straight highway with no shortcuts. The speed
limit is 100 kph. A police officer notices your car going 90 kph, and uploads your plate
and the time they saw you to their database. 150 km down this same straight road, 75
minutes later, another police officer notices your car going 85kph, and uploads your
plates to the database. Then they pull you over, and give you a speeding ticket. Why
were they justified?

You travelled 150 km in 75 minutes. Since a moving car has a position that is continuous
and differentiable, the MVT tells us that at some point, your instantaneous velocity was
150
75

kilometers per minute, which works out to 150·60
75

= 125 kph. So even though you
weren’t speeding when the officers saw you, you were definitely speeding some time in
between.

Alternately, if you were going at most 100kph, then you would travel 150 kilometers in at
least 90 minutes.
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According to this website, Canada geese may fly 1500 miles in a single day under
favorable conditions. It also says their top speed is around 70mph. Does this seem like a
typo? (If it contradicts the Mean Value Theorem, it’s probably a typo.)

Credit: This Incredible World, link, unedited, creative commons license

https://americanexpedition.us/canada-goose-information-facts-photos-and-artwork
https://www.flickr.com/photos/thisincredibleworld/3634775188/in/photostream/


Chapter 2: Differentiation 2.13 Mean Value Theorem

According to this website, Canada geese may fly 1500 miles in a single day under
favorable conditions. It also says their top speed is around 70mph. Does this seem like a
typo? (If it contradicts the Mean Value Theorem, it’s probably a typo.)

We can assume that the position of a goose is continuous and differentiable. Then the
MVT tells us that a goose that travels 1500 miles in a day (24 hours) achieves, at some
instant, a speed of 1500

24
mph. Since 1500

24
= 62.5, these two facts seem compatible (and

amazing!).

https://americanexpedition.us/canada-goose-information-facts-photos-and-artwork
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The record for fastest wheel-driven land speed is around 700 kph. 1 However, non-wheel
driven cars (such as those powered by jet engines) have achieved higher speeds. 2

Suppose a driver of a jet-powered car starts a 10km race at 12:00, and finishes at 12:01.
Did they beat 700kph?

1George Poteet, https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record
2 record-holder ThrustSSC shown

https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record
https://en.wikipedia.org/wiki/Land_speed_record
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The record for fastest wheel-driven land speed is around 700 kph. 1 However, non-wheel
driven cars (such as those powered by jet engines) have achieved higher speeds. 2

Suppose a driver of a jet-powered car starts a 10km race at 12:00, and finishes at 12:01.
Did they beat 700kph?

Maybe, but not necessarily. We are guaranteed by the MVT that at some point they
reached the following speed: 10

(1/60)
= 600 kph.

1George Poteet, https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record
2 record-holder ThrustSSC shown

https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record
https://en.wikipedia.org/wiki/Land_speed_record
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Suppose you want to download a file that is 3000 MB (slightly under 3GB). Your internet
provider guarantees you that your download speeds will always be between 1 MBPS (MB
per second) and 5 MBPS (because you bought the cheap plan). Using the Mean Value
Theorem, give an upper and lower bound for how long the download can take (assuming
your providers aren’t lying, and your device is performing adequately).

We assume the download is continuous and differentiable, so we can use the MVT.
Let T be the time (in seconds) the download takes. The MVT tells us that at some
point, our speed was exactly 3000

T
, so it must be true that

1 ≤ 3000

T
≤ 5

So, 3000
5
≤ T ≤ 3000. That is, T is between 600 and 3000 seconds, or between 10 and

50 minutes.
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Suppose 1 ≤ f ′(t) ≤ 5 for all values of t, and f (0) = 0. What are the possible solutions
to f (t) = 3000?

Notice: since the derivative exists for all real numbers, f (x) is differentiable and
continuous for all real numbers!

Since f is continuous and differentiable, we can use the MVT.

f (t)− f (0)

t − 0
=

3000

t
= f ′(c)

for some value c between 0 and t.
So,

1 ≤ 3000

t
≤ 5

hence

600 ≤ t ≤ 3000
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Corollaries to the MVT

Let a < b be numbers in the domain of f (x) and g(x), which are continuous over [a, b]
and differentiable over (a, b).

If f ′(x) = 0 for all x in (a, b), then

f (x) is constant. That is, f (a′) = f (b′) for all a′, b′

in [a, b]

If f ′(x) = g ′(x), then

f (x) = g(x) + A for some constant value A.

If f ′(x) > 0 for all x in (a, b), then

f (x) is increasing. That is, f (b′) > f (a′) for all
a′ < b′ in [a, b]

If f ′(x) < 0 for all x in (a, b), then

f (x) is decreasing. That is, f (b′) < f (a′) for all
a′ < b′ in [a, b]
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