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Rolle’s Theorem

Let a and b be real numbers, with a < b. And let f be a function with the properties:

•

f (x) is continuous for every x with a ≤ x ≤ b;

•

f (x) is differentiable for every x with a < x < b;

• and f (a) = f (b).

Then there exists a number c with a < c < b such that

f ′(c) = 0.

Example: Let f (x) = x3 − 2x2 + 1, and observe f (2) = f (0) = 1. Since f (x) is a
polynomial, it is continuous and differentiable everywhere.
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Suppose a < b and f (a) = f (b), f (x) is continuous over [a, b], and f (x) is differentiable
over (a, b).

How many different values of x between a and b have f ′(x) = 0?

A. 0 or 1

B. 1

C. 0, 1, or more

D. 1 or more

E. I’m not sure
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Suppose a < b and f (a) = f (b), f (x) is continuous over [a, b], and f (x) is differentiable
over (a, b).

Can f have an infinte number of points where f ′(x) = 0 between a and b?

A. Sure! :D

B. No way! >:-[

C. Only if a and b are infinitely far apart

D. I’m not sure
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Let a and b be real numbers, with a < b. And let f be a function with the properties:

• f (x) is continuous for every x with a ≤ x ≤ b;

• f (x) is differentiable for every x with a < x < b;

• and f (a) = f (b).

Then there exists a number c with a < c < b such that

f ′(c) = 0.
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Suppose f (x) is continuous and differentiable for all real numbers, and f (x) has precisely
seven roots. How many roots does f ′(x) have?
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C. at most seven

D. at least six
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What’s the Use?

Example: MeanValue 1

Prove that the function f (x) = x3 + x − 1 has at most one real root.

Note that f (x) is continuous and differentiable over all real numbers. So, by Rolle’s
Theorem, if it has two roots, then f ′(x) = 0 for some x .

f ′(x) = 3x2 + 1, and this is always positive, so it’s never zero. Therefore, by Rolle’s
Theorem, f (x) does not have two roots; so it has at most one.

Logical Structure:

• If A is true, then B is true.
• B is false.
• Therefore, A is false.

• If f (x) has two (or more) roots, then
f ′(x) has a root.
• f ′(x) does not have a root.
• Therefore, f (x) does not have two (or
more) roots.

How would you show that it has precisely one real root?
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Note that f (x) is continuous and differentiable over all real numbers. So, by Rolle’s
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Example: MeanValue 2

Use Rolle’s Theorem to show that the function f (x) = 1
3
x3 + 3x2 + 9x − 3 has at most

two real roots.

Again we use the structure:

• If f (x) has three roots, then f ′(x) has two roots.
• f ′(x) does not have two roots.
• Therefore, f (x) does not have three roots.

So, all we need to do is make sure the conditions of Rolle’s Theorem are satisfied, and
show that f ′(x) does not have three roots.

Since f (x) is continuous and differentiable over all real numbers, the conditions of Rolle’s
Theorem are satisfied.

f ′(x) = x2 + 6x + 9 = (x + 3)2, which only has ONE root.

Therefore, f ′(x) does not have two roots, so f (x) does not have three roots.

So, f (x) has at most two roots.
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Example: MeanValue 3

Show that the function f (x) = 1
4
x4 + x + 9 has no real roots.

Rolle’s Theorem can’t help us show that there are no real roots. We find the global
minimum instead. Since lim

x→±∞
f (x) =∞, there is no global maximum. There are n

singular points, and the only critical point is at x = −1, and this is the global minimum.
Since f (−1) = 1

4
− 1 + 9 > 0, we conclude f (x) has no roots.
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Average Rate of Change

x

y

1 3

5

3

1

What is the average rate of change of f (x) from x = 1 to x = 3?

A. 0

∆y
∆x

= 3−3
3−1

= 0
2

= 0

B. 1

C. 2

D. 4

E. I’m not sure
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Average Rate of Change
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What is the average rate of change of f (x) from x = 2 to x = 7?

A. 0

∆y
∆x

= 15−15
7−2

= 0
5

= 0

B. 3

C. 5

D. 15

E. I’m not sure
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Rolle’s Theorem and Average Rate of Change

Suppose f (x) is continuous on the interval [a, b], differentiable on the interval (a, b), and
f (a) = f (b). Then there exists a number c strictly between a and b such that

f ′(c) = 0 =
f (b)− f (a)

b − a
.

So there exists a point where the derivative is the same as the average rate of change.
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Mean Value Theorem

Let f (x) be continuous on the interval [a, b] and differentiable on (a, b). Then there is a
number c between a and b such that:

f ′(c) =
f (b)− f (a)

b − a

That is: there is some point c strictly between a and b where the instantaneous rate of
change of the function is equal to the average rate of change of the function on the
interval [a, b].

Rolle’s Theorem

Let f (x) be continuous on the interval [a, b], differentiable on (a, b), and let f (a) = f (b).
Then there is a number c strictly between a and b such that:

f ′(c) = 0 =
f (b)− f (a)

b − a
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Example: MeanValue 4

Suppose you are driving along a long, straight highway with no shortcuts. The speed
limit is 100 kph. A police officer notices your car going 90 kph, and uploads your plate
and the time they saw you to their database. 150 km down this same straight road, 75
minutes later, another police officer notices your car going 85kph, and uploads your
plates to the database. Then they pull you over, and give you a speeding ticket. Why
were they justified?

link, Wikimedia commons, creative commons

https://commons.wikimedia.org/wiki/File:RCMP_Police_Interceptor.jpg
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Example: MeanValue 4

Suppose you are driving along a long, straight highway with no shortcuts. The speed
limit is 100 kph. A police officer notices your car going 90 kph, and uploads your plate
and the time they saw you to their database. 150 km down this same straight road, 75
minutes later, another police officer notices your car going 85kph, and uploads your
plates to the database. Then they pull you over, and give you a speeding ticket. Why
were they justified?

You travelled 150 km in 75 minutes. Since a moving car has a position that is continuous
and differentiable, the MVT tells us that at some point, your instantaneous velocity was
150
75

kilometers per minute, which works out to 150·60
75

= 120 kph. So even though you
weren’t speeding when the officers saw you, you were definitely speeding some time in
between.

Alternately, if you were going at most 100kph, then you would travel 150 kilometers in at
least 90 minutes.
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Example: MeanValue 5

According to this website, Canada geese may fly 1500 miles in a single day under
favorable conditions. It also says their top speed is around 70mph. Does this seem like a
typo? (If it contradicts the Mean Value Theorem, it’s probably a typo.)

Credit: This Incredible World, link, unedited, creative commons license

https://americanexpedition.us/canada-goose-information-facts-photos-and-artwork
https://www.flickr.com/photos/thisincredibleworld/3634775188/in/photostream/
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Example: MeanValue 5

According to this website, Canada geese may fly 1500 miles in a single day under
favorable conditions. It also says their top speed is around 70mph. Does this seem like a
typo? (If it contradicts the Mean Value Theorem, it’s probably a typo.)

We can assume that the position of a goose is continuous and differentiable. Then the
MVT tells us that a goose that travels 1500 miles in a day (24 hours) achieves, at some
instant, a speed of 1500

24
mph. Since 1500

24
= 62.5, these two facts seem compatible (and

amazing!).

https://americanexpedition.us/canada-goose-information-facts-photos-and-artwork
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Example: MeanValue 6

The record for fastest wheel-driven land speed is around 700 kph. 1 However, non-wheel
driven cars (such as those powered by jet engines) have achieved higher speeds. 2

Suppose a driver of a jet-powered car starts a 10km race at 12:00, and finishes at 12:01.
Did they beat 700kph?

1George Poteet, https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record
2 record-holder ThrustSSC shown

https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record
https://en.wikipedia.org/wiki/Land_speed_record


Chapter 2: Differentiation 2.13 Mean Value Theorem

Example: MeanValue 6

The record for fastest wheel-driven land speed is around 700 kph. 1 However, non-wheel
driven cars (such as those powered by jet engines) have achieved higher speeds. 2

Suppose a driver of a jet-powered car starts a 10km race at 12:00, and finishes at 12:01.
Did they beat 700kph?

Maybe, but not necessarily. We are guaranteed by the MVT that at some point they
reached the following speed: 10

(1/60)
= 600 kph.

1George Poteet, https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record
2 record-holder ThrustSSC shown

https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record
https://en.wikipedia.org/wiki/Land_speed_record
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Example: MeanValue 7

Suppose you want to download a file that is 3000 MB (slightly under 3GB). Your internet
provider guarantees you that your download speeds will always be between 1 MBPS (MB
per second) and 5 MBPS (because you bought the cheap plan). Using the Mean Value
Theorem, give an upper and lower bound for how long the download can take (assuming
your providers aren’t lying, and your device is performing adequately).

We assume the download is continuous and differentiable, so we can use the MVT.
Let T be the time (in seconds) the download takes. The MVT tells us that at some
point, our speed was exactly 3000

T
, so it must be true that

1 ≤ 3000

T
≤ 5

So, 3000
5
≤ T ≤ 3000. That is, T is between 600 and 3000 seconds, or between 10 and

50 minutes.
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Example: MeanValue 8

Suppose 1 ≤ f ′(t) ≤ 5 for all values of t, and f (0) = 0. What are the possible solutions
to f (t) = 3000?

Notice: since the derivative exists for all real numbers, f (x) is differentiable and
continuous for all real numbers!

Since f is continuous and differentiable, we can use the MVT.

f (t)− f (0)

t − 0
=

3000

t
= f ′(c)

for some value c between 0 and t.
So,

1 ≤ 3000

t
≤ 5

hence

600 ≤ t ≤ 3000
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Corollaries to the MVT

Let a < b be numbers in the domain of f (x) and g(x), which are continuous over [a, b]
and differentiable over (a, b).

If f ′(x) = 0 for all x in (a, b), then

f (x) is constant in that interval. That is, f (c) = f (d)
for all c, d in [a, b].

If f ′(x) = g ′(x), then

f (x) = g(x) + A for some constant value A.

If f ′(x) > 0 for all x in (a, b), then

f (x) is increasing. That is, f (c) < f (d) for all c < d
in [a, b].

If f ′(x) < 0 for all x in (a, b), then

f (x) is decreasing. That is, f (d) < f (c) for all c < d
in [a, b].
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