Anatomy of a Function: CLP Definitions 3.5.3, 3.5.5

Anatomy of a Function: CLP Definitions 3.5.3, 3.5.5

Anatomy of a Function: CLP Definitions 3.5.3, 3.5.5

c is a critical point if $f^{\prime}(c)=0$.

Anatomy of a Function: CLP Definitions 3.5.3, 3.5.5

Anatomy of a Function: CLP Definitions 3.5.3, 3.5.5

c is a singular point if $f^{\prime}(c)$ does not exist.

Anatomy of a Function: CLP Definitions 3.5.3, 3.5.5

This function as shown has no global maximum.

Anatomy of a Function: CLP Definitions 3.5.3, 3.5.5

Multiple Choice

Suppose $f(x)$ has domain $(-\infty, \infty)$.

Multiple Choice

Suppose $f(x)$ has domain $(-\infty, \infty)$.
If f has a local minimum at $x=2$, then:
A. $f^{\prime}(2)=0$
B. $f^{\prime}(2) \mathrm{DNE}$
C. $f^{\prime}(2)=0$ OR $f^{\prime}(2) \mathrm{DNE}$
D. $f(2)=0$
E. Not necessarily any of the above

Multiple Choice

Suppose $f(x)$ has domain $(-\infty, \infty)$.
If f has a local minimum at $x=2$, then:
A. $f^{\prime}(2)=0$
B. $f^{\prime}(2) \mathrm{DNE}$
C. $f^{\prime}(2)=0$ OR $f^{\prime}(2) \mathrm{DNE}$
D. $f(2)=0$
E. Not necessarily any of the above

Multiple Choice

Suppose $f(x)$ has domain $(-\infty, \infty)$.
If f has a local minimum at $x=2$, then:
A. $f^{\prime}(2)=0$
B. $f^{\prime}(2) \mathrm{DNE}$
C. $f^{\prime}(2)=0$ OR $f^{\prime}(2) \mathrm{DNE}$
D. $f(2)=0$
E. Not necessarily any of the above

Multiple Choice

Suppose $f(x)$ has domain $(-\infty, \infty)$.
If $f^{\prime}(5)=0$, then:
A. $f^{\prime}(5)$ DNE
B. f has a local maximum or minimum at 5
C. f may or may not have a local extremum (max or min) at 5

Multiple Choice

Suppose $f(x)$ has domain $(-\infty, \infty)$.
If $f^{\prime}(5)=0$, then:
A. $f^{\prime}(5)$ DNE
B. f has a local maximum or minimum at 5
C. f may or may not have a local extremum (max or min) at 5

Multiple Choice

Suppose $f(x)$ has domain $(-\infty, \infty)$.
If $f^{\prime}(5)=0$, then:
A. $f^{\prime}(5)$ DNE
B. f has a local maximum or minimum at 5
C. f may or may not have a local extremum (max or min) at 5

Draw a continuous function $f(x)$ with a local maximum at $x=3$ and a local minimum at $x=-1$.

Draw a continuous function $f(x)$ with a local maximum at $x=3$ and a local minimum at $x=-1$, but $f(3)<f(-1)$.

Draw a function $f(x)$ with a singular point at $x=2$ that is NOT a local maximum, or a local minimum.

Example: MaxMin 1

Suppose $f^{\prime}(x)=(x+5)^{2}(x-5)$. Then f has no singular points, and its critical points are ± 5. Identify whether the critical points are local maxima, local minima, or neither.

Suppose $f^{\prime}(x)=(x+5)^{2}(x-5)$. Then f has no singular points, and its critical points are ± 5. Identify whether the critical points are local maxima, local minima, or neither.

Second Derivative Test:

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$. Then $x=a$ is a local

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$. Then $x=a$ is a local

Suppose $f^{\prime}(x)=(x+5)^{2}(x-5)$. Then f has no singular points, and its critical points are ± 5. Identify whether the critical points are local maxima, local minima, or neither. Second Derivative Test:

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$. Then $x=a$ is a local minimum.

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$. Then $x=a$ is a local

Suppose $f^{\prime}(x)=(x+5)^{2}(x-5)$. Then f has no singular points, and its critical points are ± 5. Identify whether the critical points are local maxima, local minima, or neither.

Second Derivative Test:

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$. Then $x=a$ is a local minimum.

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$. Then $x=a$ is a local maximum.

Suppose $f^{\prime}(x)=(x+5)^{2}(x-5)$. Then f has no singular points, and its critical points are ± 5. Identify whether the critical points are local maxima, local minima, or neither.

Second Derivative Test:

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$. Then $x=a$ is a local minimum.

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$. Then $x=a$ is a local maximum.

Suppose $f^{\prime}(x)=(x+5)^{2}(x-5)$. Then f has no singular points, and its critical points are ± 5. Identify whether the critical points are local maxima, local minima, or neither.

Second Derivative Test:

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$. Then $x=a$ is a local minimum.

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$. Then $x=a$ is a local maximum.

Suppose $f^{\prime}(x)=(x+5)^{2}(x-5)$. Then f has no singular points, and its critical points are ± 5. Identify whether the critical points are local maxima, local minima, or neither.

Second Derivative Test:

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)>0$. Then $x=a$ is a local minimum.

Suppose $f^{\prime}(a)=0$ and $f^{\prime \prime}(a)<0$. Then $x=a$ is a local maximum.

We see that, when we are close to -5 , whether x is less than or greater than -5 , still $f^{\prime}(x)$ is negative. So, $f(x)$ is decreasing before $x-=5$ and also after it. So, -5 is not a local max or a local min.
Now consider $x=5$. When x is a little less, $f^{\prime}(x)$ is negative; when x is a little more than $5, f^{\prime}(x)$ is positive. So, f is decreasing till 5 , then increasing after: so 5 is a local min. Indeed, $x=5$ is the site of a global min.

Endpoints

Endpoints

Endpoints

Theorems 3.5.10, 3.5.11: A function that is continuous on the interval $[a, b]$ (where a and b are real numbers-not infinite) has a global max and min, and they occur at endpoints, critical points, or singular points.

Determining Extrema

Determining Extrema

To find local extrema:

- Could be at critical points $\left(f^{\prime}(x)=0\right)$
- Could be at singular points ($f^{\prime}(x)$ DNE)
- At these points, check whether there is some interval around x where $f(x)$ is no larger than the other numbers, or no smaller. (A sketch helps. The signs of the derivatives on either side of x are also a clue.)
To find global extrema:
- Could be at critical points $\left(f^{\prime}(x)=0\right)$
- Could be at singular points ($f^{\prime}(x)$ DNE)
- Could be at endpoints; also check the limit as the function goes to $\pm \infty$.
- Check the value of the function at all of these, and compare.

Example: MaxMin 2
Find All Extrema ${ }^{1}$:

$$
f(x)=x^{3}-3 x
$$

[^0]
Find All Extrema ${ }^{1}$:

$$
f(x)=x^{3}-3 x
$$

Since there are no endpoints, we only need to find critical points and singular points. $f^{\prime}(x)=3 x^{2}-3=3\left(x^{2}-1\right)=3(x+1)(x-1)$. So there are no singular points, and the critical points are ± 1.
We know that cubic functions grow hugely positive in one direction, and hugely negative in the other. So, there's no global max or min. We need only decide whether $x=1$ and $x=-1$ are local extrema.
We can easily graph $f^{\prime}(x)$, and we see it is an upwards-pointing parabola. It is positive to the left of $x=-1$ and positive to its right, so f is increasing up till $x=-1$, then decreasing after; so $x=1$ is a local max.
Likewise, $f^{\prime}(x)$ is negative to the left of $x=1$ and positive to the right of it; so it's decreasing till $x=1$ and increasing after. Thus $x=1$ is a local min.

[^1]Example: MaxMin 3
Find All Extrema

$$
f(x)=\sqrt[3]{x^{2}-64}, \quad x \text { in }[-1,10]
$$

Find All Extrema

$$
f(x)=\sqrt[3]{x^{2}-64}, \quad x \text { in }[-1,10]
$$

The endpoints are -1 and 10 . We differentiate to identify critical points and singular points:
$f^{\prime}(x)=\frac{1}{3}\left(x^{2}-64\right)^{-2 / 3}(2 x)=\frac{2}{3} x\left(x^{2}-64\right)^{-2 / 3}$. So the critical point is $x=0$ and the singular points are $x= \pm 8$; but since $x=-8$ is not our domain, we don't have to worry about it.
The global extrema are found by simply comparing the value of the function at the various interesting points.
$f(0)=\sqrt[3]{-64}=-4 ; f(8)=0 ; f(-1)=-\sqrt[3]{63}$; and $f(10)=\sqrt[3]{100-64}=\sqrt[3]{36}$. Of these, -4 is the smallest and $\sqrt[3]{36}$ is the largest, so the global max is $\sqrt[3]{36}$ at $x=10$, and the global \min is -4 at $x=0$.
Then it's pretty clear that $x=0$ is a local min. Since -1 and 10 are endpoints, they can't be local mins. So, what of $x=8$? When x is slightly smaller than 8 , or slightly larger than $8, f^{\prime}(x)$ is positive; so $f(x)$ is increasing to the left of 8 and also to the right of 8 . Then 8 is neither a local max nor a local min.

Example: MaxMin 4
Find the largest and smallest value of $f(x)=x^{4}-18 x^{2}$.

Find the largest and smallest value of $f(x)=x^{4}-18 x^{2}$.

There are no endpoints given, so we take the domain to be the domain of the function, which is all real numbers. As x goes to infinity or negative infinity, $f(x)$ goes to infinity, so there is no global max, hence no largest value.
To find the global min, we differentiate: $f^{\prime}(x)=4 x^{3}-36 x=4 x\left(x^{2}-9\right)$. So the critical points are 0 and ± 3, and there are no singular points.
$f(0)=0$, and $f(3)=f(-3)=-81$, so the smallest value (and global min) is -81 , and it occurs twice (which is fine): at 3 and -3 .

Example: MaxMin 5
Find the largest and smallest values of $f(x)=\sin ^{2} x-\cos x$.

Example: MaxMin 5
Find the largest and smallest values of $f(x)=\sin ^{2} x-\cos x$.

Since this function is periodic, we can restrict our search to x values in $[0,2 \pi)$. $f^{\prime}(x)=2 \sin x \cos x+\sin x=\sin x(2 \cos x+1)$. So our critical points occur when $\sin x=0$ and when $\cos x=-1 / 2$. That is, when x is $0, \pi, 2 \pi / 3$, or $4 \pi / 3$. We plug these in to find $f(0)=-1, f(\pi)=1$, and $f(2 \pi / 3)=f(4 \pi / 3)=\frac{5}{4}$. So the biggest this function gets is 1.25 , and this occurs at $x=(2+6 n) \pi / 3$ and $(4+6 n) \pi / 3$ for any integer n. The smallest $f(x)$ gets is -1 , and this occurs at $x=2 \pi n$, for any integer n.

[^0]: ${ }^{1}$ Extrema: local and global maxima and minima

[^1]: ${ }^{1}$ Extrema: local and global maxima and minima

