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c is a critical point if f ′(c) = 0.
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This function as shown has no global maximum.
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Draw a continuous function f (x) with a local maximum at x = 3 and a local minimum at
x = −1.

Draw a continuous function f (x) with a local maximum at x = 3 and a local minimum at
x = −1, but f (3) < f (−1).

Draw a function f (x) with a singular point at x = 2 that is NOT a local maximum, or a
local minimum.



Chapter 3.5: Finding Maxima and Minima 3.5.2: Finding global maxima and minima

Example: MaxMin 1

Suppose f ′(x) = (x + 5)2(x − 5). Then f has no singular points, and its critical points
are ±5. Identify whether the critical points are local maxima, local minima, or neither.

Second Derivative Test:

Suppose f ′(a) = 0 and f ′′(a) > 0. Then x = a is a local

minimum.

+ +

Suppose f ′(a) = 0 and f ′′(a) < 0. Then x = a is a local

maximum.

− −

We see that, when we are close to −5, whether x is less than or greater than −5, still
f ′(x) is negative. So, f (x) is decreasing before x− = 5 and also after it. So, −5 is not a
local max or a local min.
Now consider x = 5. When x is a little less, f ′(x) is negative; when x is a little more than
5, f ′(x) is positive. So, f is decreasing till 5, then increasing after: so 5 is a local min.
Indeed, x = 5 is the site of a global min.
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global minima; NOT at critical points

Theorems 3.5.10, 3.5.11: A function that is continuous on the interval [a, b] (where a
and b are real numbers–not infinite) has a global max and min, and they occur at

endpoints, critical points, or singular points.
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Determining Extrema

To find local extrema:

- Could be at critical points (f ′(x) = 0)

- Could be at singular points (f ′(x) DNE)

- At these points, check whether there is some interval around x where f (x) is no
larger than the other numbers, or no smaller. (A sketch helps. The signs of the
derivatives on either side of x are also a clue.)

To find global extrema:

- Could be at critical points (f ′(x) = 0)

- Could be at singular points (f ′(x) DNE)

- Could be at endpoints;
also check the limit as the function goes to ±∞.

- Check the value of the function at all of these, and compare.
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Example: MaxMin 2

Find All Extrema1:

f (x) = x3 − 3x

Since there are no endpoints, we only need to find critical points and singular points.
f ′(x) = 3x2 − 3 = 3(x2 − 1) = 3(x + 1)(x − 1). So there are no singular points, and the
critical points are ±1.
We know that cubic functions grow hugely positive in one direction, and hugely negative
in the other. So, there’s no global max or min. We need only decide whether x = 1 and
x = −1 are local extrema.
We can easily graph f ′(x), and we see it is an upwards-pointing parabola. It is positive to
the left of x = −1 and positive to its right, so f is increasing up till x = −1, then
decreasing after; so x = 1 is a local max.
Likewise, f ′(x) is negative to the left of x = 1 and positive to the right of it; so it’s
decreasing till x = 1 and increasing after. Thus x = 1 is a local min.

1Extrema: local and global maxima and minima
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Example: MaxMin 3

Find All Extrema
f (x) =

3
√

x2 − 64, x in [−1, 10]

The endpoints are −1 and 10. We differentiate to identify critical points and singular points:

f ′(x) = 1
3

(x2 − 64)−2/3(2x) = 2
3
x(x2 − 64)−2/3. So the critical point is x = 0 and the singular points are x = ±8; but

since x = −8 is not our domain, we don’t have to worry about it.
The global extrema are found by simply comparing the value of the function at the various interesting points.

f (0) = 3√−64 = −4; f (8) = 0; f (−1) = − 3√63; and f (10) = 3√100− 64 = 3√36. Of these, -4 is the smallest and 3√36 is

the largest, so the global max is 3√36 at x = 10, and the global min is −4 at x = 0.
Then it’s pretty clear that x = 0 is a local min. Since −1 and 10 are endpoints, they can’t be local mins. So, what of x = 8?
When x is slightly smaller than 8, or slightly larger than 8, f ′(x) is positive; so f (x) is increasing to the left of 8 and also to the
right of 8. Then 8 is neither a local max nor a local min.
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Example: MaxMin 4

Find the largest and smallest value of f (x) = x4 − 18x2.

There are no endpoints given, so we take the domain to be the domain of the function,
which is all real numbers. As x goes to infinity or negative infinity, f (x) goes to infinity,
so there is no global max, hence no largest value.
To find the global min, we differentiate: f ′(x) = 4x3 − 36x = 4x(x2 − 9). So the critical
points are 0 and ±3, and there are no singular points.
f (0) = 0, and f (3) = f (−3) = −81, so the smallest value (and global min) is −81, and
it occurs twice (which is fine): at 3 and −3.



Chapter 3.5: Finding Maxima and Minima 3.5.2: Finding global maxima and minima

Example: MaxMin 4

Find the largest and smallest value of f (x) = x4 − 18x2.

There are no endpoints given, so we take the domain to be the domain of the function,
which is all real numbers. As x goes to infinity or negative infinity, f (x) goes to infinity,
so there is no global max, hence no largest value.
To find the global min, we differentiate: f ′(x) = 4x3 − 36x = 4x(x2 − 9). So the critical
points are 0 and ±3, and there are no singular points.
f (0) = 0, and f (3) = f (−3) = −81, so the smallest value (and global min) is −81, and
it occurs twice (which is fine): at 3 and −3.



Chapter 3.5: Finding Maxima and Minima 3.5.2: Finding global maxima and minima

Example: MaxMin 5

Find the largest and smallest values of f (x) = sin2 x − cos x .

Since this function is periodic, we can restrict our search to x values in [0, 2π).
f ′(x) = 2 sin x cos x + sin x = sin x(2 cos x + 1). So our critical points occur when
sin x = 0 and when cos x = −1/2. That is, when x is 0, π, 2π/3, or 4π/3. We plug these
in to find f (0) = −1, f (π) = 1, and f (2π/3) = f (4π/3) = 5

4
. So the biggest this

function gets is 1.25, and this occurs at x = (2 + 6n)π/3 and (4 + 6n)π/3 for any integer
n. The smallest f (x) gets is −1, and this occurs at x = 2πn, for any integer n.
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