
Big Ideas Constant Rates of Change

Rates of Change

Suppose the population of a small country was 1 million individuals in 1990, and is
growing at a steady rate of 20,000 individuals per year.
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Big Ideas Constant Rates of Change

Definition

The slope of a line that passes through the points (x1, y1) and (x2, y2) is “rise over run”

∆y

∆x
=

y2 − y1

x2 − x1
.

This is also called the rate of change of the function.
If a line has equation y = mx + b, its slope is m.
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Rates of Change

Suppose the population of a small country is given in the chart below.
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Definition

Let y = f (x) be a curve that passes through (x1, y1) and (x2, y2). Then the average rate
of change of f (x) when x1 ≤ x ≤ x2 is

∆y

∆x
=
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x2 − x1
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Average Rate of Change and Slope

What is the difference between average rate of change and slope?
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The slope of a line that passes through the points (x1, y1) and (x2, y2) is “rise over run”

∆y

∆x
=

y2 − y1

x2 − x1
.

This is also called the rate of change of the function.
If a line has equation y = mx + b, its slope is m.
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of change of f (x) when x1 ≤ x ≤ x2 is

∆y
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=

y2 − y1

x2 − x1

The average rate of change for a straight line is always the same, regardless of the
interval we choose. We call it the slope of the line. If a curve is not a straight line, its
average rate of change will differ over different intervals.
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Rates of Change

How fast is the population growing in the year 2010?
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Big Ideas Instantaneous Rates of Change

Definition

The secant line to the curve y = f (x) through points R and Q is a line that passes
through R and Q.

We call the slope of the secant line the average rate of change of f (x) from R to Q.
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Definition

The tangent line to the curve y = f (x) at point P is a line that

• passes through P and

• has the same slope as f (x) at P.

We call the slope of the tangent line the instantaneous rate of change of f (x) at P.
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Limits 1.1-1.2 Drawing Tangents and a First Limit
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Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t
over a 10-second interval is given by s(t) = t2, graphed below. Try to estimate how fast
the balloon is rising when t = 5.
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One way:
Estimate the slope of the
tangent line to the curve
at t = 5.

Another way:
Calculate average rate of change
for intervals around 5
that get smaller and smaller.
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Let’s look for an algebraic way of determining the velocity of the balloon when t = 5.
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Suppose the interval [5, ] has length h. What is the right endpoint of the interval?
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What happens to the equation above when h is very, very small?
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Limit Notation

Average Velocity, t = 5 to t = 5 + h:

∆s

∆t
=

s(5 + h)− s(5)

h

=
(5 + h)2 − 52

h

= 10 + h when h 6= 0

When h is very small,
Vel ≈ 10

We write:
lim
h→0

(10 + h)︸ ︷︷ ︸
function

= 10

“The limit as h goes to 0 of (10 + h) is 10.”
As h gets extremely close to 0, (10 + h) gets extremely close to 10.
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Limits 1.3 The Limit of a Function

Definition

lim
x→a

f (x) = L

where a and L are real numbers
We read the above as “the limit as x goes to a of f (x) is L.”
Its meaning is: as x gets very close to (but not equal to) a, f (x) gets very close to L.

We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line:
∆y

∆x
, ∆x 6= 0.

Slope of tangent line: can’t do the same way.

If the position of an object at time t is given by s(t), then its instantaneous velocity is

given by lim
h→0

s(t + h)− s(t)

h
.
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Let f (x) =
x3 + x2 − x − 1

x − 1
.

We want to evaluate lim
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x→1

f (x) = 4
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f (x) =

 x if x < 3
1 if x = 3

x − 1 if x > 3

x

y

y = f (x)

0 1 2 3 4 5 6
0

1

2

3

4

5

What do you think should be the value of lim
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Limits 1.3 The Limit of a Function

Definition

The limit as x goes to a from the left of f (x) is written

lim
x→a−

f (x)

We only consider values of x that are less than a.

Definition

The limit as x goes to a from the right of f (x) is written

lim
x→a+

f (x)

We only consider values of x that are greater than a.

Theorem

In order for lim
x→a

f (x) to exist, both one-sided limits must exist and be equal.
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1

(x − 1)2
.

For what value of x is f (x) not defined?
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Let f (x) = sin

(
1

x

)
. Graphed by Google:

To understand why it looks this way, first evaluate: lim
x→0+

1

x
= ∞

Now, what should the graph of f (x) look like when x is near 0?
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Let f (x) = sin

(
1

x

)
. Graphed by Google:

What is lim
x→0

f (x)? DNE. This is sometimes called “infinite wiggling”

Does a limit exist for other points?



Limits 1.3 The Limit of a Function

Suppose f (x) = log(x).

x

y

−4

−2

2

−2 0 2 4 6 8

Where is f (x) defined, and where is it not defined?

What can you say about the limit of f (x) near 0?

lim
x→0+

log(x) = −∞
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D. none of the above
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f (x) = 0

“the limit as x approaches 0
from the right is 0”



Limits 1.3 The Limit of a Function

f (x) =

{
4 x ≤ 0
x2 x > 0

x

y

y = f (x)

−2 −1 1 2

1

2

3

4

What is lim
x→0

f (x)?

A. lim
x→0

f (x) = 4

B. lim
x→0

f (x) = 0

C. lim
x→0

f (x) =

{
4 x ≤ 0
0 x > 0

D. none of the above

lim
x→0

f (x) DNE

lim
x→0−

f (x) = 4

“the limit as x approaches 0
from the left is 4”

lim
x→0+

f (x) = 0

“the limit as x approaches 0
from the right is 0”



Limits 1.3 The Limit of a Function

f (x) =

{
4 x ≤ 0
x2 x > 0

x

y

y = f (x)

−2 −1 1 2

1

2

3

4

What is lim
x→0

f (x)?

A. lim
x→0

f (x) = 4

B. lim
x→0

f (x) = 0

C. lim
x→0

f (x) =

{
4 x ≤ 0
0 x > 0

D. none of the above

lim
x→0

f (x) DNE

lim
x→0−

f (x) = 4

“the limit as x approaches 0
from the left is 4”

lim
x→0+

f (x) = 0

“the limit as x approaches 0
from the right is 0”



Limits 1.3 The Limit of a Function

f (x) =

{
4 x ≤ 0
x2 x > 0

x

y

y = f (x)

−2 −1 1 2

1

2

3

4

What is lim
x→0

f (x)?

A. lim
x→0

f (x) = 4

B. lim
x→0

f (x) = 0

C. lim
x→0

f (x) =

{
4 x ≤ 0
0 x > 0

D. none of the above
lim
x→0

f (x) DNE

lim
x→0−

f (x) = 4

“the limit as x approaches 0
from the left is 4”

lim
x→0+

f (x) = 0

“the limit as x approaches 0
from the right is 0”



Limits 1.3 The Limit of a Function

f (x) =

{
4 x ≤ 0
x2 x > 0

x

y

y = f (x)

−2 −1 1 2

1

2

3

4

What is lim
x→0

f (x)?

A. lim
x→0

f (x) = 4

B. lim
x→0

f (x) = 0

C. lim
x→0

f (x) =

{
4 x ≤ 0
0 x > 0

D. none of the above
lim
x→0

f (x) DNE

lim
x→0−

f (x) = 4

“the limit as x approaches 0
from the left is 4”

lim
x→0+

f (x) = 0

“the limit as x approaches 0
from the right is 0”



Limits 1.3 The Limit of a Function

f (x) =

{
4 x ≤ 0
x2 x > 0

x

y

y = f (x)

−2 −1 1 2

1

2

3

4

What is lim
x→0

f (x)?

A. lim
x→0

f (x) = 4

B. lim
x→0

f (x) = 0

C. lim
x→0

f (x) =

{
4 x ≤ 0
0 x > 0

D. none of the above
lim
x→0

f (x) DNE

lim
x→0−

f (x) = 4

“the limit as x approaches 0
from the left is 4”

lim
x→0+

f (x) = 0

“the limit as x approaches 0
from the right is 0”



Limits 1.3 The Limit of a Function

Suppose lim
x→3−

f (x) = 1 and lim
x→3+

f (x) = 1.5. Does lim
x→3

f (x) exist?

A. Yes, certainly, because the limits from both sides exist.

B. No, never, because the limit from the left is not the same as the limit from the right.

C. Can’t tell. For some functions is might exist, for others not.

Suppose lim
x→3−

f (x) = 22 = lim
x→3+

f (x). Does lim
x→3

f (x) exist?

A. Yes, certainly, because the limits from both sides exist and are equal to each other.

B. No, never, because we only talk about one-sided limits when the actual limit doesn’t
exist.

C. Can’t tell. We need to know the value of the function at x = 3.
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Limits 1.4 Calculating Limits with Limit Laws

Calculating Limits in Simple Situations

Direct Substitution

If f (x) is a polynomial or rational function, and a is in the domain of f , then:

lim
x→a

f (x) = f (a).
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Limits 1.4 Calculating Limits with Limit Laws

Powers and Roots of Limits

Which of the following gives a real number?

A. 41/2

= 2

B. (−4)1/2

=
√
−4

C. 4−1/2

= 1
2

D. (−4)−1/2

= 1√
−4

Powers of Limits

If n is a positive integer, and lim
x→a

f (x) = F (where F is a real number), then:

lim
x→a

(f (x))n = F n.

Furthermore,
lim
x→a

(f (x))1/n = F 1/n

UNLESS n is even and F is negative.
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(f (x))n = F n.

Furthermore,
lim
x→a

(f (x))1/n = F 1/n

UNLESS n is even and F is negative.
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Cautionary Tales

lim
x→0

(5 + x)2 − 25

x

→ 0

0
; NEED ANOTHER WAY

lim
x→3

(
x − 6

3

)1/8

→ 8
√
−1; DANGER DANGER

lim
x→0

32

x
→ 32

0
; THIS EXPRESSION IS MEANINGLESS

lim
x→5

(
x2 + 2

)1/3

= (52 + 2)1/3 = 3
√

27 = 3
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Limits 1.4 Calculating Limits with Limit Laws

Functions that Differ at a Single Point

Suppose lim
x→a

g(x) exists, and f (x) = g(x)

when x is close to a (but not necessarily equal to a).

Then lim
x→a

f (x) = lim
x→a

g(x).

x

y

f (x)

g(x)

a

Evaluate lim
x→1

x3 + x2 − x − 1

x − 1
.

x3 + x2 − x − 1

x − 1
=

(x + 1)2(x − 1)

x − 1

= (x + 1)2 whenever x 6= 1

So, lim
x→1

x3 + x2 − x − 1

x − 1
= lim

x→1
(x + 1)2 = 4
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Evaluate lim
x→5

√
x + 20−

√
4x + 5

x − 5

√
x + 20−

√
4x + 5

x − 5
=

√
x + 20−

√
4x + 5

x − 5

(√
x + 20 +

√
4x + 5√

x + 20 +
√

4x + 5

)
=

(x + 20)− (4x + 5)

(x − 5)(
√
x + 20 +

√
4x + 5)

=
−3x + 25

(x − 5)(
√
x + 20 +

√
4x + 5)

=
−3√

x + 20 +
√

4x + 5

So,

lim
x→5

√
x + 20−

√
4x + 5

x − 5
= lim

x→5

−3√
x + 20 +

√
4x + 5

=
−3

√
5 + 20 +

√
4(5) + 5

=
−3

10
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Limits 1.4 Calculating Limits with Limit Laws

A Few Strategies for Calculating Limits

First, hope that you can directly substitute (plug in). If your function is made up of the
sum, difference, product, quotient, or power of ploynomials, you can do this PROVIDED
the function exists where you’re taking the limit.

lim
x→1

(√
35 + x5 +

x − 3

x2

)3

=

(√
35 + 15 +

1− 3

12

)3

= 64

If you have a function as described above and the point where you’re taking the limit is
NOT in its domain, if you think the limit exists, try to simplify and cancel.

lim
x→0

x + 7
1
x
− 1

2x

= lim
x→0

x + 7
2

2x
− 1

2x

= lim
x→0

x + 7
1

2x

= lim
x→0

2x(x + 7) = 0

Otherwise, you can try graphing the function, or making a table of values, to get a better
picture of what is going on.
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Limits 1.4 Calculating Limits with Limit Laws

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and
the denominator goes to zero, think about what division does, and figure out the
sign.

lim
x→0

x − 1

x
=

DNE

As x gets close to zero, the denominator gets very tiny, and the numberator is close to 1.
Since a tiny, tiny , tiny number “goes into” 1 many, many, many times, the value of
x − 1

x
will get very large–but might be positive or negative depending on the sign of x .

lim
x→0−

x − 1

x
=∞ and lim

x→0+

x − 1

x
= −∞

lim
x→0

x − 1

x2
=

−∞

lim
x→−4−

−3√
x2 − 4

=

−∞
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x→0

x − 1

x
= DNE

As x gets close to zero, the denominator gets very tiny, and the numberator is close to 1.
Since a tiny, tiny , tiny number “goes into” 1 many, many, many times, the value of
x − 1

x
will get very large–but might be positive or negative depending on the sign of x .

lim
x→0−
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x
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x→0+

x − 1

x
= −∞
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Limits 1.4 Calculating Limits with Limit Laws

Suppose a lemonade stand diversifies to sell lemonade, raspberry juice, and raspberry
lemonade. The prices of ingredients fluctuate, but the sale price of raspberry lemonade is
always between the sale prices of lemonade and raspberry juice. One day, as a promotion,
the stand sells lemonade and raspberry juice each for $1 a cup. How much do they sell
raspberry lemonade for on that day?

Always: lemonade ≤ raspberry lemonade ≤ raspberry juice

Today: lemonade = $1 = raspberry juice

So, today also raspberry lemonade = $1
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Limits 1.4 Calculating Limits with Limit Laws

Squeeze Theorem

Suppose, when x is near (but not necessarily equal to) a, we have functions f (x), g(x),
and h(x) so that

f (x) ≤ g(x) ≤ h(x)

and lim
x→a

f (x) = lim
x→a

h(x). Then lim
x→a

g(x) = lim
x→a

f (x).

lim
x→0

x2 sin

(
1

x

)
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lim
x→0

x2 sin

(
1

x

)

−1 ≤ sin

(
1

x

)
≤ 1

so −x2 ≤ x2 sin

(
1

x

)
≤ x2

and also lim
x→0
−x2 = 0 = lim

x→0
x2

Therefore, by the Squeeze Theorem, lim
x→0

x2 sin

(
1

x

)
= 0.
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Limits at Infinity

End Behavior

We write:
lim

x→∞
f (x) = L

to express that, as x grows larger and larger, f (x) approaches L.
Similarly, we write:

lim
x→−∞

f (x) = L

to express that, as x grows more and more strongly negative, f (x) approaches L.
If L is a number, we call y = L a horizontal asymptote of f (x).
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Common Limits at Infinity
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∞
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x3 =

−∞
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x5/3 =

−∞
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x2/3 =
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Arithmetic with Limits at Infinity

lim
x→∞

(
x +

x2

10

)
=

∞

lim
x→∞

(
x − x2

10

)
=

lim
x→∞

x
(

1− x

10

)
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(
x2 + x3 + x4

)
=

lim
x→−∞

x4

(
1

x2
+

1

x
+ 1
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=∞

lim
x→−∞

(x + 13)
(
x2 + 13

)1/3

=
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Limits 1.5 Limits at Infinity

Calculating Limits at Infinity

lim
x→∞

x2 + 2x + 1

x3

Trick: factor out largest power of denominator.

lim
x→∞

x2 + 2x + 1

x3
= lim

x→∞

x2 + 2x + 1

x3

(
1
x3

1
x3

)

= lim
x→∞

1
x

+ 2
x2 + 1

x3

1

Now, you can do algebra

=
lim

x→∞

1

x
+ lim

x→∞

2

x2
+ lim

x→∞

1

x3

lim
x→∞

1

=
0 + 0 + 0

1
= 0
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Calculating Limits at Infinity

lim
x→−∞

(x7/3 − x5/3)

Again: factor out largest power of x .

(x7/3 − x5/3) = x7/3

(
1− 1

x2/3

)
lim

x→−∞
x7/3 = −∞

lim
x→−∞

(
1− 1

x2/3

)
= 1

So, lim
x→−∞

(x7/3 − x5/3) = −∞
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Calculating Limits at Infinity

Suppose the height of a bouncing ball is given by h(t) = sin(t)+1
t

, for t ≥ 1. What
happens to the height over a long period of time?

0 ≤ sin(t) + 1

t
≤ 2

t

lim
t→∞

0 = 0 = lim
t→∞

2

t

So, by the Squeeze Theorem,

lim
t→∞

sin(t) + 1

t
= 0
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Tough One

lim
x→∞

√
x4 + x2 + 1−

√
x4 + 3x2

Multiply function by conjugate:

(√
x4 + x2 + 1−

√
x4 + 3x2

)(√x4 + x2 + 1 +
√
x4 + 3x2

√
x4 + x2 + 1 +

√
x4 + 3x2

)
=

−2x2 + 1
√
x4 + x2 + 1 +

√
x4 + 3x2

Factor out highest power: x2 (same as
√
x4)

−2x2 + 1
√
x4 + x2 + 1 +

√
x4 + 3x2

(
1/x2

1/
√
x4

)

=
−2 + 1

x2√
1 + 1

x2 + 1
x4 +

√
1 + 3

x2

lim
x→∞

−2 + 1
x2√

1 + 1
x2 + 1

x4 +
√

1 + 3
x2

=
−2 + 0

√
1 + 0 + 0 +

√
1 + 0

=
−2

2
= −1
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√
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Limits 1.5 Limits at Infinity

Evaluate lim
x→−∞

√
3 + x2

3x

We factor out the largest power of the denominator, which is is x .
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x→−∞

√
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(
1/x

1/x

)
= lim

x→−∞
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Limits 1.6 Continuity

Continuity

Definition

A function f (x) is continuous at a point a if lim
x→a

f (x) exists AND is equal to f (a).

A function f (x) is continuous from the left at a point a if
lim

x→a−
f (x) exists AND is equal to f (a).

f (x) =

{
x2 sin

(
1
x

)
, x 6= 0

0 , x = 0

Is f (x) continuous at 0?
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Continuity

Definition

A function f (x) is continuous at a point a if

lim
x→a

f (x) = f (a)

Functions made by adding, subtracting, multiplying, dividing, and taking appropriate
powers of polynomials are continuous for every point in their domain.
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Limits 1.6 Continuity

Continuity

Definition

A function f (x) is continuous at a point a if

lim
x→a

f (x) = f (a)

Functions made by adding, subtracting, multiplying, dividing, and taking appropriate
powers of polynomials are continuous for every point in their domain.
Example:

f (x) =
x2

2x − 10
−

(
x2 + 2x − 1

x − 1
+

5
√

25− x − 1
x

x + 2

)1/3

f (x) is continuous at every point except 5, 1, 0, and −2.
A continuous function is continuous for every point in R.
We say f (x) is continuous over (a, b) if it is continuous at every point in (a, b). So, f (x)
is continuous over its domain, (−∞,−2) ∪ (−2, 0) ∪ (0, 1) ∪ (1, 5) ∪ (5,∞).



Limits 1.6 Continuity

Continuity

Definition

A function f (x) is continuous at a point a if

lim
x→a

f (x) = f (a)

Common Functions

Functions of the following types are continuous over their domains:

- polynomials and rationals

- roots and powers

- trig functions and their inverses

- exponential and logarithm

- The products, sums, differences, quotients, powers, and compositions of continuous
functions



Limits 1.6 Continuity

Where is the following function continuous?

f (x) =

(
sin x

(x − 2)(x + 3)
+ e
√

x

)3

Over its domain: [0, 2) ∪ (2,∞).

Lots of examples in notes.
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+ e
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x

)3

Over its domain: [0, 2) ∪ (2,∞).

Lots of examples in notes.
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Continuity in Nature

Baby weight chart, 1909
Source: http://gallery.nen.gov.uk/asset668105-.html



Limits 1.6 Continuity

Continuity in Nature

Graph of luminosity of a star over time, after star explodes.
Data from 1987. Source:
http://abyss.uoregon.edu/ ∼js/ast122/lectures/ lec18.html



Limits 1.6 Continuity

A Technical Point

Definition

A function f (x) is continuous on the closed interval [a, b] if:

f (x) is continuous over (a, b), and

f (x) is continuous form the left at

b

, and

f (x) is continuous form the right at

a

a b
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f (x) is continuous form the right at a
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Limits 1.6 Continuity

Intermediate Value Theorem (IVT)

Theorem:

Let a < b and let f (x) be continuous over [a, b]. If y is any number between f (a) and
f (b), then there exists c in (a, b) such that f (c) = y .

x

y

a b

f (a)

f (b)

y

c

y

c
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Limits 1.6 Continuity

Intermediate Value Theorem (IVT)

Theorem:

Let a < b and let f (x) be continuous over [a, b]. If y is any number between f (a) and
f (b), then there exists c in (a, b) such that f (c) = y .

Suppose your favorite number is 45.54. At noon, your car is parked, and at 1pm you’re
driving 100kph. By the Intermediate Value Theorem, at some point between noon and
1pm you were going exactly 45.54 kph.



Limits 1.6 Continuity

Using IVT to Find Roots: “Bisection Method”

Let f (x) = x5 − 2x4 + 2. Find any value x for which f (x) = 0.

Let’s find some points:

f (0) = 2 f (1) = 1 f (−1) = −1
f (−.5) = 1.84375 f (−0.75) ≈ 1.1298 f (−.9) = 0.09731

f (−.95) ≈ −0.4

So, there has to be a root between and .
We can say there is a root at approximately x = −0.9
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Don’t use a calculator for these problems: use values that you can easily calculate.
Use the Intermediate Value Theorem to show that there exists some solution to the
equation ln x · ex = 4 and give a reasonable interval where that solution might occur.

- The function f (x) = ln x · ex is continuous over its domain, which is (0,∞). In
particular, then, it is continuous over the interval (1, e).

- f (1) = ln(1)e = 0 · e = 0 and f (e) = ln(e) · ee = ee . Since e > 2, we know
f (e) = ee > 22 = 4.

- Then 4 is between f (1) and f (e).
- By the Intermediate Value Theorem, f (c) = 4 for some c in (1, e).

Use the Intermediate Value Theorem to give a reasonable interval where the following is
true: ex = sin(x)

We can rearrange this: let f (x) = ex − sin(x), and note f (x) has roots exactly when the
above equation is true.

- The function f (x) = ex − sin x is continuous over its domain, which is all real
numbers. In particular, then, it is continuous over the interval

(
− 3π

2
, e
)
.

- f (0) = e0 − sin 0 = 1− 0 = 0 and

f
(
− 3π

2

)
= e−

3π
2 − sin

(−3π
2

)
= e−

3π
2 − 1 < e0 − 1 = 1− 1 = 0.

- Then 0 is between f (0) and f
(
− 3π

2

)
.

- By the Intermediate Value Theorem, f (c) = 0 for some c in
(
− 3π

2
, 0
)
.

- Therefore, ec = sin c for some c in
(
− 3π

2
, 0
)
.

Is there any value of x so that sin x = cos(2x) + 1
4
?

Yes, somewhere between 0 and π
2

.
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Is the following reasoning correct?

- f (x) = tan x is continuous over its domain, because it is a trigonometric function.

- In particular, f (x) is continuous over the interval
[
π
4
, 3π

4

]
.

FALSE

- f
(
π
4

)
= 1, and f

(
3π
4

)
= −1.

- Since f
(

3π
4

)
< 0 < f

(
π
4

)
, by the Intermediate Value Theorem, there exists some

number c in the interval
(
π
4
, 3π

4

)
such that f (c) = 0.

x

y
π
2

y = tan x

π
4

3π
4

1

−1
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Let’s Review



Limits 1.6 Continuity

Suppose f (x) is continuous at x = 1. Does f (x) have to be defined at x = 1?

Yes. Since f (x) is continuous at x = 1, lim
x→1

f (x) = f (1), so f (1) must exist.

Suppose f (x) is continuous at x = 1 and lim
x→1−

f (x) = 30.

True or false: lim
x→1+

f (x) = 30.

True. Since f (x) is continuous at x = 1, lim
x→1

f (x) = f (1), so lim
x→1

f (x) must exist. That

means both one-sided limits exist, and are equal to each other.

Suppose f (x) is continuous at x = 1 and f (1) = 22. What is lim
x→1

f (x)?

22 = f (1) = lim
x→1

f (x).

Suppose lim
x→1

f (x) = 2. Must it be true that f (1) = 2?

No. In order to determine the limit as x goes to 1, we ignore f (1). Perhaps every f (x) is
not defined at 1.
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Limits 1.6 Continuity

f (x) =

{
ax2 x ≥ 1
3x x < 1

For which value(s) of a is f (x) continuous?

We need ax2 = 3x when x = 1, so a = 3.
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f (x) =

{ √
3x+3

x2−3
x 6= ±

√
3

a x = ±
√

3

For which value(s) of a is f (x) continuous at x = −
√

3?
For which value(s) of a is f (x) continuous at x =

√
3?
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f (x) =

{ √
3x+3

x2−3
x 6= ±

√
3

a x = ±
√

3

For which value(s) of a is f (x) continuous at x = −
√

3?
By the definition of continuity, if f (x) is continuous at x = −

√
3, then

f (−
√

3) = lim
x→−

√
3
f (x). Note f (−

√
3) = a, and when x is close to (but not equal to)

−
√

3, then f (x) =
√

3x+3
x2−3

.

f (−
√

3) = lim
x→−

√
3
f (x)

a = lim
x→−

√
3

√
3x + 3

x2 − 3
= lim

x→−
√

3

√
3(x +

√
3)

(x +
√

3)(x −
√

3)

= lim
x→−

√
3

√
3

x −
√

3
=

√
3

−
√

3−
√

3
= −1

2

So we can use a = − 1
2

to make f (x) continuous at x = −
√

3.

For which value(s) of a is f (x) continuous at x =
√

3?



Limits 1.6 Continuity

f (x) =

{ √
3x+3

x2−3
x 6= ±

√
3

a x = ±
√

3

For which value(s) of a is f (x) continuous at x = −
√

3?
For which value(s) of a is f (x) continuous at x =

√
3?

By the definition of continuity, if f (x) is continuous at x =
√

3, then f (
√

3) = lim
x→
√

3
f (x).

When x is close to (but not equal to)
√

3, then f (x) =
√

3x+3
x2−3

. However, as x approaches√
3, the denominator of this expression gets closer and closer to zero, while the top gets

closer and closer to 6. So, this limit does not exist. Therefore, no value of a will make
f (x) continuous at x =

√
3.



Derivatives

For the next batch of slides, see
http://www.math.ubc.ca/~elyse/100/2016/Deriv_Conceptual.pdf

http://www.math.ubc.ca/~elyse/100/2016/Deriv_Conceptual.pdf
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