Rates of Change

Suppose the population of a small country was 1 million individuals in 1990, and is growing at a steady rate of 20,000 individuals per year.

Rates of Change

Suppose the population of a small country was 1 million individuals in 1990, and is growing at a steady rate of 20,000 individuals per year.

Rates of Change

Suppose the population of a small country was 1 million individuals in 1990, and is growing at a steady rate of 20,000 individuals per year.

Rates of Change

Suppose the population of a small country was 1 million individuals in 1990, and is growing at a steady rate of 20,000 individuals per year.

Rates of Change

Suppose the population of a small country was 1 million individuals in 1990, and is growing at a steady rate of 20,000 individuals per year.

Rates of Change

Suppose the population of a small country was 1 million individuals in 1990, and is growing at a steady rate of 20,000 individuals per year.

Rates of Change

Suppose the population of a small country was 1 million individuals in 1990, and is growing at a steady rate of 20,000 individuals per year.

Definition

The slope of a line that passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is "rise over run"

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

This is also called the rate of change of the function.
If a line has equation $y=m x+b$, its slope is m.

Definition

The slope of a line that passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is "rise over run"

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

This is also called the rate of change of the function. If a line has equation $y=m x+b$, its slope is m.

Definition

The slope of a line that passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is "rise over run"

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

This is also called the rate of change of the function.
If a line has equation $y=m x+b$, its slope is m.

Rate of change: $\frac{400,000 \text { people }}{20 \text { years }}=20,000 \frac{\text { people }}{\text { year }}$

Definition

The slope of a line that passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is "rise over run"

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

This is also called the rate of change of the function.
If a line has equation $y=m x+b$, its slope is m.

Rate of change: $\frac{400,000 \text { people }}{20 \text { years }}=20,000 \frac{\text { people }}{\text { year }}$ (doesn't depend on the year)

Rates of Change

Suppose the population of a small country is given in the chart below.

Rates of Change

Suppose the population of a small country is given in the chart below.

Rates of Change

Suppose the population of a small country is given in the chart below.

Rate of change: $\frac{\Delta \text { pop }}{\Delta \text { time }}$

Rates of Change

Suppose the population of a small country is given in the chart below.

Rate of change: $\frac{\Delta \text { pop }}{\Delta \text { time }}$ depends on time interval

Rates of Change

Suppose the population of a small country is given in the chart below.

Rate of change: $\frac{\Delta \text { pop }}{\Delta \text { time }}$ depends on time interval

Rates of Change

Suppose the population of a small country is given in the chart below.

Rate of change: $\frac{\Delta \text { pop }}{\Delta \text { time }}$ depends on time interval

Rates of Change

Suppose the population of a small country is given in the chart below.

Rate of change: $\frac{\Delta \text { pop }}{\Delta \text { time }}$ depends on time interval

Rates of Change

Suppose the population of a small country is given in the chart below.

Rate of change: $\frac{\Delta \text { pop }}{\Delta \text { time }}$ depends on time interval

Definition

Let $y=f(x)$ be a curve that passes through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then the average rate of change of $f(x)$ when $x_{1} \leq x \leq x_{2}$ is

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Definition

Let $y=f(x)$ be a curve that passes through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then the average rate of change of $f(x)$ when $x_{1} \leq x \leq x_{2}$ is

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Average rate of change from 1990 to 2000: 80, 000 people per year.

Definition

Let $y=f(x)$ be a curve that passes through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then the average rate of change of $f(x)$ when $x_{1} \leq x \leq x_{2}$ is

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Average rate of change from 1990 to 2000: 80, 000 people per year. Average rate of change from 2010 to 2020: 240, 000 people per year.

Average Rate of Change and Slope

What is the difference between average rate of change and slope?

Average Rate of Change and Slope

What is the difference between average rate of change and slope?

Definition

The slope of a line that passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is "rise over run"

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
$$

This is also called the rate of change of the function. If a line has equation $y=m x+b$, its slope is m.

Definition

Let $y=f(x)$ be a curve that passes through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then the average rate of change of $f(x)$ when $x_{1} \leq x \leq x_{2}$ is

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Average Rate of Change and Slope

What is the difference between average rate of change and slope?
Definition
The slope of a line that passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is "rise over run"

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
$$

This is also called the rate of change of the function. If a line has equation $y=m x+b$, its slope is m.

Definition
Let $y=f(x)$ be a curve that passes through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then the average rate of change of $f(x)$ when $x_{1} \leq x \leq x_{2}$ is

$$
\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The average rate of change for a straight line is always the same, regardless of the interval we choose. We call it the slope of the line. If a curve is not a straight line, its average rate of change will differ over different intervals.

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Rates of Change

How fast is the population growing in the year 2010?

Definition

The secant line to the curve $y=f(x)$ through points R and Q is a line that passes through R and Q.

Definition

The secant line to the curve $y=f(x)$ through points R and Q is a line that passes through R and Q.

Definition

The secant line to the curve $y=f(x)$ through points R and Q is a line that passes through R and Q.

Definition

The secant line to the curve $y=f(x)$ through points R and Q is a line that passes through R and Q.
We call the slope of the secant line the average rate of change of $f(x)$ from R to Q.

Definition

The secant line to the curve $y=f(x)$ through points R and Q is a line that passes through R and Q.
We call the slope of the secant line the average rate of change of $f(x)$ from R to Q.

Definition

The tangent line to the curve $y=f(x)$ at point P is a line that

- passes through P and
- has the same slope as $f(x)$ at P.

Definition

The secant line to the curve $y=f(x)$ through points R and Q is a line that passes through R and Q.
We call the slope of the secant line the average rate of change of $f(x)$ from R to Q.

Definition

The tangent line to the curve $y=f(x)$ at point P is a line that

- passes through P and
- has the same slope as $f(x)$ at P.

Definition

The secant line to the curve $y=f(x)$ through points R and Q is a line that passes through R and Q.
We call the slope of the secant line the average rate of change of $f(x)$ from R to Q.

Definition

The tangent line to the curve $y=f(x)$ at point P is a line that

- passes through P and
- has the same slope as $f(x)$ at P.

Definition

The secant line to the curve $y=f(x)$ through points R and Q is a line that passes through R and Q.
We call the slope of the secant line the average rate of change of $f(x)$ from R to Q.

Definition

The tangent line to the curve $y=f(x)$ at point P is a line that

- passes through P and
- has the same slope as $f(x)$ at P.

We call the slope of the tangent line the instantaneous rate of change of $f(x)$ at P.

On the graph below, draw the secant line to the curve through points P and Q.

On the graph below, draw the tangent line to the curve at point P.

On the graph below, draw the secant line to the curve through points P and Q.

On the graph below, draw the tangent line to the curve at point P.

On the graph below, draw the secant line to the curve through points P and Q.

On the graph below, draw the tangent line to the curve at point P.

It takes me half an hour to bike 6 km . So, 12 kph represents the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
C. tangent line to $y=s(t)$ at $t=8: 30$
D. slope of the tangent line to $y=s(t)$ at $t=8: 30$

It takes me half an hour to bike 6 km . So, 12 kph represents the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
C. tangent line to $y=s(t)$ at $t=8: 30$
D. slope of the tangent line to $y=s(t)$ at $t=8: 30$

It takes me half an hour to bike 6 km . So, 12 kph represents the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
C. tangent line to $y=s(t)$ at $t=8: 30$
D. slope of the tangent line to $y=s(t)$ at $t=8: 30$

It takes me half an hour to bike 6 km . So, 12 kph represents the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
C. tangent line to $y=s(t)$ at $t=8: 30$
D. slope of the tangent line to $y=s(t)$ at $t=8: 30$

It takes me half an hour to bike 6 km . So, 12 kph represents the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
C. tangent line to $y=s(t)$ at $t=8: 30$
D. slope of the tangent line to $y=s(t)$ at $t=8: 30$

It takes me half an hour to bike 6 km . So, 12 kph represents the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 30$
C. tangent line to $y=s(t)$ at $t=8: 30$
D. slope of the tangent line to $y=s(t)$ at $t=8: 30$

When I pedal up Crescent Rd at $8: 25$, the speedometer on my bike tells me I'm going 5 kph . This corresponds to the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
C. tangent line to $y=s(t)$ at $t=8: 25$
D. slope of the tangent line to $y=s(t)$ at $t=8: 25$

When I pedal up Crescent Rd at $8: 25$, the speedometer on my bike tells me I'm going 5 kph . This corresponds to the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
C. tangent line to $y=s(t)$ at $t=8: 25$
D. slope of the tangent line to $y=s(t)$ at $t=8: 25$

When I pedal up Crescent Rd at $8: 25$, the speedometer on my bike tells me I'm going 5 kph . This corresponds to the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
C. tangent line to $y=s(t)$ at $t=8: 25$
D. slope of the tangent line to $y=s(t)$ at $t=8: 25$

When I pedal up Crescent Rd at $8: 25$, the speedometer on my bike tells me I'm going 5 kph . This corresponds to the:
A. secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
B. slope of the secant line to $y=s(t)$ from $t=8: 00$ to $t=8: 25$
C. tangent line to $y=s(t)$ at $t=8: 25$
D. slope of the tangent line to $y=s(t)$ at $t=8: 25$

Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t over a 10 -second interval is given by $s(t)=t^{2}$, graphed below. Try to estimate how fast the balloon is rising when $t=5$.

Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t over a 10 -second interval is given by $s(t)=t^{2}$, graphed below. Try to estimate how fast the balloon is rising when $t=5$.

Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t over a 10 -second interval is given by $s(t)=t^{2}$, graphed below. Try to estimate how fast the balloon is rising when $t=5$.

Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t over a 10 -second interval is given by $s(t)=t^{2}$, graphed below. Try to estimate how fast the balloon is rising when $t=5$.

Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t over a 10 -second interval is given by $s(t)=t^{2}$, graphed below. Try to estimate how fast the balloon is rising when $t=5$.

Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t over a 10 -second interval is given by $s(t)=t^{2}$, graphed below. Try to estimate how fast the balloon is rising when $t=5$.

Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t over a 10 -second interval is given by $s(t)=t^{2}$, graphed below. Try to estimate how fast the balloon is rising when $t=5$.

Suppose the distance from the ground s (in meters) of a helium-filled balloon at time t over a 10 -second interval is given by $s(t)=t^{2}$, graphed below. Try to estimate how fast the balloon is rising when $t=5$.

Let's look for an algebraic way of determining the velocity of the balloon when $t=5$.

Let's look for an algebraic way of determining the velocity of the balloon when $t=5$.

Suppose the interval [5,] has length h. What is the right endpoint of the interval?

Let's look for an algebraic way of determining the velocity of the balloon when $t=5$.

Write the equation for the average (vertical) velocity from $t=5$ to $t=5+h$.

Let's look for an algebraic way of determining the velocity of the balloon when $t=5$.

Write the equation for the average (vertical) velocity from $t=5$ to $t=5+h$.

$$
\text { vel }=\frac{\Delta \text { height }}{\Delta \text { time }}=\frac{s(5+h)-s(5)}{(5+h)-5}=\frac{(5+h)^{2}-5^{2}}{h}
$$

Let's look for an algebraic way of determining the velocity of the balloon when $t=5$.

Write the equation for the average (vertical) velocity from $t=5$ to $t=5+h$.

$$
\text { vel }=\frac{\Delta \text { height }}{\Delta \text { time }}=\frac{s(5+h)-s(5)}{(5+h)-5}=\frac{(5+h)^{2}-5^{2}}{h}
$$

What happens to the equation above when h is very, very small?

Let's look for an algebraic way of determining the velocity of the balloon when $t=5$.

What do you think is the slope of the tangent line to the graph when $t=5$?

Limit Notation

Average Velocity, $t=5$ to $t=5+h$:

$$
\frac{\Delta s}{\Delta t}=\frac{s(5+h)-s(5)}{h}
$$

Limit Notation

Average Velocity, $t=5$ to $t=5+h$:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s(5+h)-s(5)}{h} \\
& =\frac{(5+h)^{2}-5^{2}}{h}
\end{aligned}
$$

Limit Notation

Average Velocity, $t=5$ to $t=5+h$:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s(5+h)-s(5)}{h} \\
& =\frac{(5+h)^{2}-5^{2}}{h} \\
& =10+h \quad \text { when } h \neq 0
\end{aligned}
$$

Limit Notation

Average Velocity, $t=5$ to $t=5+h$:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s(5+h)-s(5)}{h} \\
& =\frac{(5+h)^{2}-5^{2}}{h} \\
& =10+h \quad \text { when } h \neq 0
\end{aligned}
$$

When h is very small,

Limit Notation

Average Velocity, $t=5$ to $t=5+h$:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s(5+h)-s(5)}{h} \\
& =\frac{(5+h)^{2}-5^{2}}{h} \\
& =10+h \quad \text { when } h \neq 0
\end{aligned}
$$

When h is very small,

$$
\mathrm{Vel} \approx 10
$$

Limit Notation

Average Velocity, $t=5$ to $t=5+h$:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s(5+h)-s(5)}{h} \\
& =\frac{(5+h)^{2}-5^{2}}{h} \\
& =10+h \quad \text { when } h \neq 0
\end{aligned}
$$

When h is very small,

$$
\mathrm{Vel} \approx 10
$$

We write:

$$
\lim _{h \rightarrow 0}(10+h)=10
$$

"The limit as h goes to 0 of $(10+h)$ is 10. ."

Limit Notation

Average Velocity, $t=5$ to $t=5+h$:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s(5+h)-s(5)}{h} \\
& =\frac{(5+h)^{2}-5^{2}}{h} \\
& =10+h \quad \text { when } h \neq 0
\end{aligned}
$$

When h is very small,

$$
\mathrm{Vel} \approx 10
$$

We write:

$$
\underbrace{\lim _{h \rightarrow 0}(10+h)=10}_{\text {limit as } h \text { goes to } 0}
$$

"The limit as h goes to 0 of $(10+h)$ is $10 . "$

Limit Notation

Average Velocity, $t=5$ to $t=5+h$:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s(5+h)-s(5)}{h} \\
& =\frac{(5+h)^{2}-5^{2}}{h} \\
& =10+h \quad \text { when } h \neq 0
\end{aligned}
$$

When h is very small,

$$
\mathrm{Vel} \approx 10
$$

We write:

$$
\lim _{h \rightarrow 0} \underbrace{(10+h)}_{\text {function }}=10
$$

"The limit as h goes to 0 of $(10+h)$ is 10. ."

Limit Notation

Average Velocity, $t=5$ to $t=5+h$:

$$
\begin{aligned}
\frac{\Delta s}{\Delta t} & =\frac{s(5+h)-s(5)}{h} \\
& =\frac{(5+h)^{2}-5^{2}}{h} \\
& =10+h \quad \text { when } h \neq 0
\end{aligned}
$$

When h is very small,

$$
\mathrm{Vel} \approx 10
$$

We write:

$$
\lim _{h \rightarrow 0} \underbrace{(10+h)}_{\text {function }}=10
$$

"The limit as h goes to 0 of $(10+h)$ is 10. ."
As h gets extremely close to $0,(10+h)$ gets extremely close to 10 .

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) $a, f(x)$ gets very close to L.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) $a, f(x)$ gets very close to L.

If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) $a, f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.

If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) $a, f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) $a, f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) $a, f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) a, $f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) a, $f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) a, $f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) a, $f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) a, $f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) a, $f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) a, $f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

Definition

$$
\lim _{x \rightarrow a} f(x)=L
$$

where a and L are real numbers
We read the above as "the limit as x goes to a of $f(x)$ is L."
Its meaning is: as x gets very close to (but not equal to) a, $f(x)$ gets very close to L.
We DESPERATELY NEED limits to find slopes of tangent lines.

Slope of secant line: $\frac{\Delta y}{\Delta x}, \Delta x \neq 0$.
Slope of tangent line: can't do the same way.
If the position of an object at time t is given by $s(t)$, then its instantaneous velocity is given by $\lim _{h \rightarrow 0} \frac{s(t+h)-s(t)}{h}$.

$$
\text { Let } f(x)=\frac{x^{3}+x^{2}-x-1}{x-1} .
$$

We want to evaluate $\lim _{x \rightarrow 1} f(x)$.

$$
\text { Let } f(x)=\frac{x^{3}+x^{2}-x-1}{x-1} .
$$

We want to evaluate $\lim _{x \rightarrow 1} f(x)$.

What is $f(1) ?$

$$
\text { Let } f(x)=\frac{x^{3}+x^{2}-x-1}{x-1}
$$

We want to evaluate $\lim _{x \rightarrow 1} f(x)$.

What is $f(1)$? DNE (can't divide by zero)

$$
\text { Let } f(x)=\frac{x^{3}+x^{2}-x-1}{x-1}
$$

We want to evaluate $\lim _{x \rightarrow 1} f(x)$.

What is $f(1)$? DNE (can't divide by zero) Use the table below to guess $\lim _{x \rightarrow 1} f(x)$

x	$f(x)$
0.9	3.61
0.99	3.9601
0.999	3.99600
0.9999	3.99960
1.1	4.41
1.01	4.0401
1.001	4.00400
1.0001	4.00040

$$
\text { Let } f(x)=\frac{x^{3}+x^{2}-x-1}{x-1}
$$

We want to evaluate $\lim _{x \rightarrow 1} f(x)$.

What is $f(1)$? DNE (can't divide by zero) Use the table below to guess $\lim _{x \rightarrow 1} f(x)$

x	$f(x)$
0.9	3.61
0.99	3.9601
0.999	3.99600
0.9999	3.99960
1.1	4.41
1.01	4.0401
1.001	4.00400
1.0001	4.00040

$$
\lim _{x \rightarrow 1} f(x)=4
$$

What do you think should be the value of $\lim _{x \rightarrow 3} f(x)$?

What do you think should be the value of $\lim _{x \rightarrow 3} f(x)$?
DNE

What do you think should be the value of $\lim _{x \rightarrow 3} f(x)$?
DNE
Evaluate:

What do you think should be the value of $\lim _{x \rightarrow 3} f(x)$?
DNE
Evaluate:

$$
\underbrace{\lim _{x \rightarrow 3^{-}} f(x)}_{\text {from the left }}=3
$$

$$
\underbrace{\lim _{x \rightarrow 3^{+}} f(x)}_{\text {from the right }}
$$

What do you think should be the value of $\lim _{x \rightarrow 3} f(x)$?
DNE
Evaluate:

$$
\underbrace{\lim _{x \rightarrow 3^{-}} f(x)}_{\text {from the left }}=3
$$

$$
\underbrace{\lim _{x \rightarrow 3^{+}} f(x)}_{\text {from the right }}=2
$$

Definition

The limit as x goes to a from the left of $f(x)$ is written

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

We only consider values of x that are less than a.

Definition

The limit as x goes to a from the right of $f(x)$ is written

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

We only consider values of x that are greater than a.

Definition

The limit as x goes to a from the left of $f(x)$ is written

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

We only consider values of x that are less than a.

Definition

The limit as x goes to a from the right of $f(x)$ is written

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

We only consider values of x that are greater than a.

Theorem

In order for $\lim _{x \rightarrow a} f(x)$ to exist, both one-sided limits must exist and be equal.

Consider the function $f(x)=\frac{1}{(x-1)^{2}}$.
For what value of x is $f(x)$ not defined?

Consider the function $f(x)=\frac{1}{(x-1)^{2}}$.
Based on the graph below, what would you like to write for:

Consider the function $f(x)=\frac{1}{(x-1)^{2}}$.
Based on the graph below, what would you like to write for:

Consider the function $f(x)=\frac{1}{(x-1)^{2}}$.
Based on the graph below, what would you like to write for:

Let $f(x)=\sin \left(\frac{1}{x}\right)$. Graphed by Google:
Graph for $\sin (1 / x)$

Let $f(x)=\sin \left(\frac{1}{x}\right)$. Graphed by Google:

Graph for $\sin (1 / x)$

To understand why it looks this way, first evaluate: $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=$

Let $f(x)=\sin \left(\frac{1}{x}\right)$. Graphed by Google:

Graph for $\sin (1 / x)$

To understand why it looks this way, first evaluate: $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$
Now, what should the graph of $f(x)$ look like when x is near 0 ?

Let $f(x)=\sin \left(\frac{1}{x}\right)$. Graphed by Google:
Graph for $\sin (1 / x)$

What is $\lim _{x \rightarrow 0} f(x) ?$

Let $f(x)=\sin \left(\frac{1}{x}\right)$. Graphed by Google:
Graph for $\sin (1 / x)$

What is $\lim _{x \rightarrow 0} f(x)$? DNE. This is sometimes called "infinite wiggling"

Let $f(x)=\sin \left(\frac{1}{x}\right)$. Graphed by Google:

Graph for $\sin (1 / x)$

What is $\lim _{x \rightarrow 0} f(x)$? DNE. This is sometimes called "infinite wiggling"

Does a limit exist for other points?

Suppose $f(x)=\log (x)$.

Where is $f(x)$ defined, and where is it not defined?

What can you say about the limit of $f(x)$ near 0 ?

Suppose $f(x)=\log (x)$.

Where is $f(x)$ defined, and where is it not defined?

What can you say about the limit of $f(x)$ near 0 ?

$$
\lim _{x \rightarrow 0^{+}} \log (x)=-\infty
$$

$$
f(x)=\left\{\begin{array}{rl}
x^{2} & x \neq 1 \\
2 & x=1
\end{array}\right.
$$

What is $\lim _{x \rightarrow 1} f(x) ?$

$$
f(x)=\left\{\begin{array}{rl}
x^{2} & x \neq 1 \\
2 & x=1
\end{array}\right.
$$

What is $\lim _{x \rightarrow 1} f(x)$?
A. $\lim _{x \rightarrow 1} f(x)=2$
B. $\lim _{x \rightarrow 1} f(x)=1$
C. $\lim _{x \rightarrow 1} f(x)$ DNE
D. none of the above

$$
f(x)=\left\{\begin{array}{rl}
x^{2} & x \neq 1 \\
2 & x=1
\end{array}\right.
$$

What is $\lim _{x \rightarrow 1} f(x)$?
A. $\lim _{x \rightarrow 1} f(x)=2$
B. $\lim _{x \rightarrow 1} f(x)=1$
C. $\lim _{x \rightarrow 1} f(x)$ DNE
D. none of the above

$$
f(x)=\left\{\begin{array}{rl}
4 & x \leq 0 \\
x^{2} & x>0
\end{array}\right.
$$

$$
f(x)=\left\{\begin{array}{rl}
4 & x \leq 0 \\
x^{2} & x>0
\end{array}\right.
$$

A. $\lim _{x \rightarrow 0} f(x)=4$
B. $\lim _{x \rightarrow 0} f(x)=0$
C. $\lim _{x \rightarrow 0} f(x)= \begin{cases}4 & x \leq 0 \\ 0 & x>0\end{cases}$
D. none of the above

$$
f(x)=\left\{\begin{array}{rl}
4 & x \leq 0 \\
x^{2} & x>0
\end{array}\right.
$$

A. $\lim _{x \rightarrow 0} f(x)=4$
B. $\lim _{x \rightarrow 0} f(x)=0$
C. $\lim _{x \rightarrow 0} f(x)= \begin{cases}4 & x \leq 0 \\ 0 & x>0\end{cases}$
D. none of the above

$$
f(x)=\left\{\begin{array}{rl}
4 & x \leq 0 \\
x^{2} & x>0
\end{array}\right.
$$

What is $\lim _{x \rightarrow 0} f(x)$?
A. $\lim _{x \rightarrow 0} f(x)=4$
B. $\lim _{x \rightarrow 0} f(x)=0$
C. $\lim _{x \rightarrow 0} f(x)= \begin{cases}4 & x \leq 0 \\ 0 & x>0\end{cases}$
D. none of the above $\lim _{x \rightarrow 0} f(x)$ DNE

$$
f(x)=\left\{\begin{array}{rl}
4 & x \leq 0 \\
x^{2} & x>0
\end{array}\right.
$$

$$
\lim _{x \rightarrow 0^{-}} f(x)=4
$$

"the limit as x approaches 0 from the left is $4 "$

What is $\lim _{x \rightarrow 0} f(x)$?
A. $\lim _{x \rightarrow 0} f(x)=4$
B. $\lim _{x \rightarrow 0} f(x)=0$
C. $\lim _{x \rightarrow 0} f(x)= \begin{cases}4 & x \leq 0 \\ 0 & x>0\end{cases}$
D. none of the above $\lim _{x \rightarrow 0} f(x)$ DNE

$$
f(x)=\left\{\begin{array}{rl}
4 & x \leq 0 \\
x^{2} & x>0
\end{array}\right.
$$

$$
\lim _{x \rightarrow 0^{-}} f(x)=4
$$

"the limit as x approaches 0 from the left is 4"

What is $\lim _{x \rightarrow 0} f(x)$?
A. $\lim _{x \rightarrow 0} f(x)=4$
B. $\lim _{x \rightarrow 0} f(x)=0$
C. $\lim _{x \rightarrow 0} f(x)= \begin{cases}4 & x \leq 0 \\ 0 & x>0\end{cases}$
D. none of the above $\lim _{x \rightarrow 0} f(x)$ DNE

$$
\lim _{x \rightarrow 0^{+}} f(x)=0
$$

"the limit as x approaches 0 from the right is 0 "

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=1$ and $\lim _{x \rightarrow 3^{+}} f(x)=1.5$. Does $\lim _{x \rightarrow 3} f(x)$ exist?

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=1$ and $\lim _{x \rightarrow 3^{+}} f(x)=1.5$. Does $\lim _{x \rightarrow 3} f(x)$ exist?
A. Yes, certainly, because the limits from both sides exist.
B. No, never, because the limit from the left is not the same as the limit from the right.
C. Can't tell. For some functions is might exist, for others not.

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=1$ and $\lim _{x \rightarrow 3^{+}} f(x)=1.5$. Does $\lim _{x \rightarrow 3} f(x)$ exist?
A. Yes, certainly, because the limits from both sides exist.
B. No, never, because the limit from the left is not the same as the limit from the right.
C. Can't tell. For some functions is might exist, for others not.

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=1$ and $\lim _{x \rightarrow 3^{+}} f(x)=1.5$. Does $\lim _{x \rightarrow 3} f(x)$ exist?
A. Yes, certainly, because the limits from both sides exist.
B. No, never, because the limit from the left is not the same as the limit from the right.
C. Can't tell. For some functions is might exist, for others not.

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=22=\lim _{x \rightarrow 3^{+}} f(x)$. Does $\lim _{x \rightarrow 3} f(x)$ exist?

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=1$ and $\lim _{x \rightarrow 3^{+}} f(x)=1.5$. Does $\lim _{x \rightarrow 3} f(x)$ exist?
A. Yes, certainly, because the limits from both sides exist.
B. No, never, because the limit from the left is not the same as the limit from the right.
C. Can't tell. For some functions is might exist, for others not.

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=22=\lim _{x \rightarrow 3^{+}} f(x)$. Does $\lim _{x \rightarrow 3} f(x)$ exist?
A. Yes, certainly, because the limits from both sides exist and are equal to each other.
B. No, never, because we only talk about one-sided limits when the actual limit doesn't exist.
C. Can't tell. We need to know the value of the function at $x=3$.

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=1$ and $\lim _{x \rightarrow 3^{+}} f(x)=1.5$. Does $\lim _{x \rightarrow 3} f(x)$ exist?
A. Yes, certainly, because the limits from both sides exist.
B. No, never, because the limit from the left is not the same as the limit from the right.
C. Can't tell. For some functions is might exist, for others not.

Suppose $\lim _{x \rightarrow 3^{-}} f(x)=22=\lim _{x \rightarrow 3^{+}} f(x)$. Does $\lim _{x \rightarrow 3} f(x)$ exist?
A. Yes, certainly, because the limits from both sides exist and are equal to each other.
B. No, never, because we only talk about one-sided limits when the actual limit doesn't exist.
C. Can't tell. We need to know the value of the function at $x=3$.

Calculating Limits in Simple Situations

Direct Substitution

If $f(x)$ is a polynomial or rational function, and a is in the domain of f, then:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Calculating Limits in Simple Situations

Direct Substitution

If $f(x)$ is a polynomial or rational function, and a is in the domain of f, then:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Calculate: $\lim _{x \rightarrow 3}\left(\frac{x^{2}-9}{x+3}\right)$

Calculating Limits in Simple Situations

Direct Substitution

If $f(x)$ is a polynomial or rational function, and a is in the domain of f, then:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Calculate: $\lim _{x \rightarrow 3}\left(\frac{x^{2}-9}{x+3}\right)=\left(\frac{3^{2}-9}{3+3}\right)=\frac{0}{6}=0$

Calculating Limits in Simple Situations

Direct Substitution

If $f(x)$ is a polynomial or rational function, and a is in the domain of f, then:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Calculate: $\lim _{x \rightarrow 3}\left(\frac{x^{2}-9}{x+3}\right)=\left(\frac{3^{2}-9}{3+3}\right)=\frac{0}{6}=0$

Calculate: $\lim _{x \rightarrow 3}\left(\frac{x^{2}-9}{x-3}\right)$

Calculating Limits in Simple Situations

Direct Substitution

If $f(x)$ is a polynomial or rational function, and a is in the domain of f, then:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Calculate: $\lim _{x \rightarrow 3}\left(\frac{x^{2}-9}{x+3}\right)=\left(\frac{3^{2}-9}{3+3}\right)=\frac{0}{6}=0$

Calculate: $\lim _{x \rightarrow 3}\left(\frac{x^{2}-9}{x-3}\right)$ Can't do it the same way: 3 not in domain

Calculating Limits in Simple Situations

Direct Substitution

If $f(x)$ is a polynomial or rational function, and a is in the domain of f, then:

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Algebra with Limits
Suppose $\lim _{x \rightarrow a} f(x)=F$ and $\lim _{x \rightarrow a} g(x)=G$, where F and G are both real numbers. Then:

- $\lim _{x \rightarrow a}(f(x)+g(x))=F+G$
- $\lim _{x \rightarrow a}(f(x)-g(x))=F-G$
- $\lim _{x \rightarrow a}(f(x) g(x))=F G$
- $\lim _{x \rightarrow a}(f(x) / g(x))=F / G$ PROVIDED $G \neq 0$

Calculating Limits in Simple Situations

Direct Substitution

Algebra with Limits
Suppose $\lim _{x \rightarrow a} f(x)=F$ and $\lim _{x \rightarrow a} g(x)=G$, where F and G are both real numbers. Then:

- $\lim _{x \rightarrow a}(f(x)+g(x))=F+G$
- $\lim _{x \rightarrow a}(f(x)-g(x))=F-G$
- $\lim _{x \rightarrow a}(f(x) g(x))=F G$
- $\lim _{x \rightarrow a}(f(x) / g(x))=F / G$ PROVIDED $G \neq 0$

Calculate: $\lim _{x \rightarrow 1}\left[\frac{2 x+4}{x+2}+13\left(\frac{x+5}{3 x}\right)\left(\frac{x^{2}}{2 x-1}\right)\right]$

Calculating Limits in Simple Situations

Direct Substitution

Algebra with Limits

Calculate: $\lim _{x \rightarrow 1}\left[\frac{2 x+4}{x+2}+13\left(\frac{x+5}{3 x}\right)\left(\frac{x^{2}}{2 x-1}\right)\right]$

$$
=\lim _{x \rightarrow 1}\left(\frac{2 x+4}{2 x+2}\right)+\left(\lim _{x \rightarrow 1} 13\right)\left(\lim _{x \rightarrow 1} \frac{x+5}{3 x}\right)\left(\frac{x^{2}}{2 x-1}\right)
$$

Calculating Limits in Simple Situations

Direct Substitution

Algebra with Limits

Calculate: $\lim _{x \rightarrow 1}\left[\frac{2 x+4}{x+2}+13\left(\frac{x+5}{3 x}\right)\left(\frac{x^{2}}{2 x-1}\right)\right]$

$$
\begin{gathered}
=\lim _{x \rightarrow 1}\left(\frac{2 x+4}{2 x+2}\right)+\left(\lim _{x \rightarrow 1} 13\right)\left(\lim _{x \rightarrow 1} \frac{x+5}{3 x}\right)\left(\frac{x^{2}}{2 x-1}\right) \\
=\left(\frac{2(1)+4}{2(1)+2}\right)+(13)\left(\frac{(1)+5}{3(1)}\right)\left(\frac{1^{2}}{2(1)-1}\right)
\end{gathered}
$$

Calculating Limits in Simple Situations

Direct Substitution

Algebra with Limits

Calculate: $\lim _{x \rightarrow 1}\left[\frac{2 x+4}{x+2}+13\left(\frac{x+5}{3 x}\right)\left(\frac{x^{2}}{2 x-1}\right)\right]$

$$
\begin{gathered}
=\lim _{x \rightarrow 1}\left(\frac{2 x+4}{2 x+2}\right)+\left(\lim _{x \rightarrow 1} 13\right)\left(\lim _{x \rightarrow 1} \frac{x+5}{3 x}\right)\left(\frac{x^{2}}{2 x-1}\right) \\
=\left(\frac{2(1)+4}{2(1)+2}\right)+(13)\left(\frac{(1)+5}{3(1)}\right)\left(\frac{1^{2}}{2(1)-1}\right) \\
=(2)+13(2)(1)
\end{gathered}
$$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}$
B. $(-4)^{1 / 2}$
C. $4^{-1 / 2}$
D. $(-4)^{-1 / 2}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}$
C. $4^{-1 / 2}$
D. $(-4)^{-1 / 2}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}=\sqrt{-4}$
C. $4^{-1 / 2}$
D. $(-4)^{-1 / 2}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}=\sqrt{-4}$
C. $4^{-1 / 2}=\frac{1}{2}$
D. $(-4)^{-1 / 2}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}=\sqrt{-4}$
C. $4^{-1 / 2}=\frac{1}{2}$
D. $(-4)^{-1 / 2}=\frac{1}{\sqrt{-4}}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}=\sqrt{-4}$
C. $4^{-1 / 2}=\frac{1}{2}$
D. $(-4)^{-1 / 2}=\frac{1}{\sqrt{-4}}$
A. $8^{1 / 3}$
B. $(-8)^{1 / 3}$
C. $8^{-1 / 3}$
D. $(-8)^{-1 / 3}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}=\sqrt{-4}$
C. $4^{-1 / 2}=\frac{1}{2}$
D. $(-4)^{-1 / 2}=\frac{1}{\sqrt{-4}}$
A. $8^{1 / 3}=2$
B. $(-8)^{1 / 3}$
C. $8^{-1 / 3}$
D. $(-8)^{-1 / 3}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}=\sqrt{-4}$
C. $4^{-1 / 2}=\frac{1}{2}$
D. $(-4)^{-1 / 2}=\frac{1}{\sqrt{-4}}$
A. $8^{1 / 3}=2$
B. $(-8)^{1 / 3}=-2$
C. $8^{-1 / 3}$
D. $(-8)^{-1 / 3}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}=\sqrt{-4}$
C. $4^{-1 / 2}=\frac{1}{2}$
D. $(-4)^{-1 / 2}=\frac{1}{\sqrt{-4}}$
A. $8^{1 / 3}=2$
B. $(-8)^{1 / 3}=-2$
C. $8^{-1 / 3}=\frac{1}{2}$
D. $(-8)^{-1 / 3}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}=\sqrt{-4}$
C. $4^{-1 / 2}=\frac{1}{2}$
D. $(-4)^{-1 / 2}=\frac{1}{\sqrt{-4}}$
A. $8^{1 / 3}=2$
B. $(-8)^{1 / 3}=-2$
C. $8^{-1 / 3}=\frac{1}{2}$
D. $(-8)^{-1 / 3}=\frac{1}{-2}$

Powers and Roots of Limits

Which of the following gives a real number?
A. $4^{1 / 2}=2$
B. $(-4)^{1 / 2}=\sqrt{-4}$
C. $4^{-1 / 2}=\frac{1}{2}$
D. $(-4)^{-1 / 2}=\frac{1}{\sqrt{-4}}$
A. $8^{1 / 3}=2$
B. $(-8)^{1 / 3}=-2$
C. $8^{-1 / 3}=\frac{1}{2}$
D. $(-8)^{-1 / 3}=\frac{1}{-2}$

Powers of Limits
If n is a positive integer, and $\lim _{x \rightarrow a} f(x)=F$ (where F is a real number), then:

$$
\lim _{x \rightarrow a}(f(x))^{n}=F^{n}
$$

Furthermore,

$$
\lim _{x \rightarrow a}(f(x))^{1 / n}=F^{1 / n}
$$

UNLESS n is even and F is negative.

Powers and Roots of Limits

Powers of Limits
If n is a positive integer, and $\lim _{x \rightarrow a} f(x)=F$ (where F is a real number), then:

$$
\lim _{x \rightarrow a}(f(x))^{n}=F^{n}
$$

Furthermore,

$$
\lim _{x \rightarrow a}(f(x))^{1 / n}=F^{1 / n}
$$

UNLESS n is even and F is negative.

$$
\lim _{x \rightarrow 4}(x+5)^{1 / 2}
$$

Powers and Roots of Limits

Powers of Limits

If n is a positive integer, and $\lim _{x \rightarrow a} f(x)=F$ (where F is a real number), then:

$$
\lim _{x \rightarrow a}(f(x))^{n}=F^{n}
$$

Furthermore,

$$
\lim _{x \rightarrow a}(f(x))^{1 / n}=F^{1 / n}
$$

UNLESS n is even and F is negative.

$$
\lim _{x \rightarrow 4}(x+5)^{1 / 2}=\left[\lim _{x \rightarrow 4}(x+5)\right]^{1 / 2}
$$

Powers and Roots of Limits

Powers of Limits

If n is a positive integer, and $\lim _{x \rightarrow a} f(x)=F$ (where F is a real number), then:

$$
\lim _{x \rightarrow a}(f(x))^{n}=F^{n}
$$

Furthermore,

$$
\lim _{x \rightarrow a}(f(x))^{1 / n}=F^{1 / n}
$$

UNLESS n is even and F is negative.

$$
\lim _{x \rightarrow 4}(x+5)^{1 / 2}=\left[\lim _{x \rightarrow 4}(x+5)\right]^{1 / 2}=9^{1 / 2}
$$

Powers and Roots of Limits

Powers of Limits

If n is a positive integer, and $\lim _{x \rightarrow a} f(x)=F$ (where F is a real number), then:

$$
\lim _{x \rightarrow a}(f(x))^{n}=F^{n}
$$

Furthermore,

$$
\lim _{x \rightarrow a}(f(x))^{1 / n}=F^{1 / n}
$$

UNLESS n is even and F is negative.

$$
\lim _{x \rightarrow 4}(x+5)^{1 / 2}=\left[\lim _{x \rightarrow 4}(x+5)\right]^{1 / 2}=9^{1 / 2}=3
$$

Cautionary Tales

$$
\lim _{x \rightarrow 0} \frac{(5+x)^{2}-25}{x}
$$

Cautionary Tales

$$
\lim _{x \rightarrow 0} \frac{(5+x)^{2}-25}{x} \rightarrow \frac{0}{0} ; \text { NEED ANOTHER WAY }
$$

Cautionary Tales

$$
\lim _{x \rightarrow 0} \frac{(5+x)^{2}-25}{x} \rightarrow \frac{0}{0} ; \text { NEED ANOTHER WAY }
$$

$$
\lim _{x \rightarrow 3}\left(\frac{x-6}{3}\right)^{1 / 8}
$$

Cautionary Tales

$$
\lim _{x \rightarrow 0} \frac{(5+x)^{2}-25}{x} \rightarrow \frac{0}{0} ; \text { NEED ANOTHER WAY }
$$

$$
\lim _{x \rightarrow 3}\left(\frac{x-6}{3}\right)^{1 / 8} \rightarrow \sqrt[8]{-1} ; \text { DANGER DANGER }
$$

Cautionary Tales

$$
\lim _{x \rightarrow 0} \frac{(5+x)^{2}-25}{x} \rightarrow \frac{0}{0} ; \text { NEED ANOTHER WAY }
$$

$\lim _{x \rightarrow 3}\left(\frac{x-6}{3}\right)^{1 / 8} \rightarrow \sqrt[8]{-1} ;$ DANGER DANGER
$\lim _{x \rightarrow 0} \frac{32}{x}$

Cautionary Tales

$\lim _{x \rightarrow 0} \frac{(5+x)^{2}-25}{x} \rightarrow \frac{0}{0} ;$ NEED ANOTHER WAY
$\lim _{x \rightarrow 3}\left(\frac{x-6}{3}\right)^{1 / 8} \rightarrow \sqrt[8]{-1} ;$ DANGER DANGER
$\lim _{x \rightarrow 0} \frac{32}{x} \rightarrow \frac{32}{0}$; THIS EXPRESSION IS MEANINGLESS

Cautionary Tales

$$
\lim _{x \rightarrow 0} \frac{(5+x)^{2}-25}{x} \rightarrow \frac{0}{0} ; \text { NEED ANOTHER WAY }
$$

$$
\lim _{x \rightarrow 3}\left(\frac{x-6}{3}\right)^{1 / 8} \rightarrow \sqrt[8]{-1} ; \text { DANGER DANGER }
$$

$$
\lim _{x \rightarrow 0} \frac{32}{x} \rightarrow \frac{32}{0} ; \text { THIS EXPRESSION IS MEANINGLESS }
$$

$$
\lim _{x \rightarrow 5}\left(x^{2}+2\right)^{1 / 3}
$$

Cautionary Tales

$$
\lim _{x \rightarrow 0} \frac{(5+x)^{2}-25}{x} \rightarrow \frac{0}{0} ; \text { NEED ANOTHER WAY }
$$

$$
\lim _{x \rightarrow 3}\left(\frac{x-6}{3}\right)^{1 / 8} \rightarrow \sqrt[8]{-1} ; \text { DANGER DANGER }
$$

$$
\lim _{x \rightarrow 0} \frac{32}{x} \rightarrow \frac{32}{0} ; \text { THIS EXPRESSION IS MEANINGLESS }
$$

$$
\lim _{x \rightarrow 5}\left(x^{2}+2\right)^{1 / 3}=\left(5^{2}+2\right)^{1 / 3}=\sqrt[3]{27}=3
$$

Functions that Differ at a Single Point

Suppose $\lim _{x \rightarrow a} g(x)$ exists, and $f(x)=g(x)$
when x is close to a (but not necessarily equal to a).
Then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Functions that Differ at a Single Point

Suppose $\lim _{x \rightarrow a} g(x)$ exists, and $f(x)=g(x)$ when x is close to a (but not necessarily equal to a).

Then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Evaluate $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}-x-1}{x-1}$.

Functions that Differ at a Single Point

Suppose $\lim _{x \rightarrow a} g(x)$ exists, and $f(x)=g(x)$ when x is close to a (but not necessarily equal to a).

Then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Evaluate $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}-x-1}{x-1}$.

$$
\begin{aligned}
\frac{x^{3}+x^{2}-x-1}{x-1} & =\frac{(x+1)^{2}(x-1)}{x-1} \\
& =(x+1)^{2} \text { whenever } x \neq 1
\end{aligned}
$$

Functions that Differ at a Single Point

Suppose $\lim _{x \rightarrow a} g(x)$ exists, and $f(x)=g(x)$ when x is close to a (but not necessarily equal to a).

Then $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)$.

Evaluate $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}-x-1}{x-1}$.

$$
\begin{aligned}
\frac{x^{3}+x^{2}-x-1}{x-1} & =\frac{(x+1)^{2}(x-1)}{x-1} \\
& =(x+1)^{2} \text { whenever } x \neq 1
\end{aligned}
$$

So, $\lim _{x \rightarrow 1} \frac{x^{3}+x^{2}-x-1}{x-1}=\lim _{x \rightarrow 1}(x+1)^{2}=4$

Evaluate $\lim _{x \rightarrow 5} \frac{\sqrt{x+20}-\sqrt{4 x+5}}{x-5}$

Evaluate $\lim _{x \rightarrow 5} \frac{\sqrt{x+20}-\sqrt{4 x+5}}{x-5}$

$$
\begin{aligned}
\frac{\sqrt{x+20}-\sqrt{4 x+5}}{x-5} & =\frac{\sqrt{x+20}-\sqrt{4 x+5}}{x-5}\left(\frac{\sqrt{x+20}+\sqrt{4 x+5}}{\sqrt{x+20}+\sqrt{4 x+5}}\right) \\
& =\frac{(x+20)-(4 x+5)}{(x-5)(\sqrt{x+20}+\sqrt{4 x+5})} \\
& =\frac{-3 x+25}{(x-5)(\sqrt{x+20}+\sqrt{4 x+5})} \\
& =\frac{-3}{\sqrt{x+20}+\sqrt{4 x+5}}
\end{aligned}
$$

So,

$$
\begin{aligned}
\lim _{x \rightarrow 5} \frac{\sqrt{x+20}-\sqrt{4 x+5}}{x-5} & =\lim _{x \rightarrow 5} \frac{-3}{\sqrt{x+20}+\sqrt{4 x+5}} \\
& =\frac{-3}{\sqrt{5+20}+\sqrt{4(5)+5}}=\frac{-3}{10}
\end{aligned}
$$

A Few Strategies for Calculating Limits

First, hope that you can directly substitute (plug in). If your function is made up of the sum, difference, product, quotient, or power of ploynomials, you can do this PROVIDED the function exists where you're taking the limit.

$$
\lim _{x \rightarrow 1}\left(\sqrt{35+x^{5}}+\frac{x-3}{x^{2}}\right)^{3}=
$$

A Few Strategies for Calculating Limits

First, hope that you can directly substitute (plug in). If your function is made up of the sum, difference, product, quotient, or power of ploynomials, you can do this PROVIDED the function exists where you're taking the limit.

$$
\lim _{x \rightarrow 1}\left(\sqrt{35+x^{5}}+\frac{x-3}{x^{2}}\right)^{3}=\left(\sqrt{35+1^{5}}+\frac{1-3}{1^{2}}\right)^{3}=64
$$

A Few Strategies for Calculating Limits

First, hope that you can directly substitute (plug in). If your function is made up of the sum, difference, product, quotient, or power of ploynomials, you can do this PROVIDED the function exists where you're taking the limit.

$$
\lim _{x \rightarrow 1}\left(\sqrt{35+x^{5}}+\frac{x-3}{x^{2}}\right)^{3}=\left(\sqrt{35+1^{5}}+\frac{1-3}{1^{2}}\right)^{3}=64
$$

If you have a function as described above and the point where you're taking the limit is NOT in its domain, if you think the limit exists, try to simplify and cancel.

$$
\lim _{x \rightarrow 0} \frac{x+7}{\frac{1}{x}-\frac{1}{2 x}}
$$

A Few Strategies for Calculating Limits

First, hope that you can directly substitute (plug in). If your function is made up of the sum, difference, product, quotient, or power of ploynomials, you can do this PROVIDED the function exists where you're taking the limit.

$$
\lim _{x \rightarrow 1}\left(\sqrt{35+x^{5}}+\frac{x-3}{x^{2}}\right)^{3}=\left(\sqrt{35+1^{5}}+\frac{1-3}{1^{2}}\right)^{3}=64
$$

If you have a function as described above and the point where you're taking the limit is NOT in its domain, if you think the limit exists, try to simplify and cancel.

$$
\lim _{x \rightarrow 0} \frac{x+7}{\frac{1}{x}-\frac{1}{2 x}}=\lim _{x \rightarrow 0} \frac{x+7}{\frac{2}{2 x}-\frac{1}{2 x}}=\lim _{x \rightarrow 0} \frac{x+7}{\frac{1}{2 x}}=\lim _{x \rightarrow 0} 2 x(x+7)=0
$$

Otherwise, you can try graphing the function, or making a table of values, to get a better picture of what is going on.

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and the denominator goes to zero, think about what division does, and figure out the sign.

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and the denominator goes to zero, think about what division does, and figure out the sign.

$$
\lim _{x \rightarrow 0} \frac{x-1}{x}=
$$

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and the denominator goes to zero, think about what division does, and figure out the sign.

$$
\lim _{x \rightarrow 0} \frac{x-1}{x}=
$$

As x gets close to zero, the denominator gets very tiny, and the numberator is close to 1 . Since a tiny, tiny, tiny number "goes into" 1 many, many, many times, the value of $\frac{x-1}{x}$ will get very large-but might be positive or negative depending on the sign of x.

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and the denominator goes to zero, think about what division does, and figure out the sign.

$$
\lim _{x \rightarrow 0} \frac{x-1}{x}=
$$

As x gets close to zero, the denominator gets very tiny, and the numberator is close to 1 . Since a tiny, tiny, tiny number "goes into" 1 many, many, many times, the value of $\frac{x-1}{x}$ will get very large-but might be positive or negative depending on the sign of x.

$$
\lim _{x \rightarrow 0^{-}} \frac{x-1}{x}=\infty
$$

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and the denominator goes to zero, think about what division does, and figure out the sign.

$$
\lim _{x \rightarrow 0} \frac{x-1}{x}=
$$

As x gets close to zero, the denominator gets very tiny, and the numberator is close to 1 . Since a tiny, tiny, tiny number "goes into" 1 many, many, many times, the value of $\frac{x-1}{x}$ will get very large-but might be positive or negative depending on the sign of x.

$$
\lim _{x \rightarrow 0^{-}} \frac{x-1}{x}=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \frac{x-1}{x}=-\infty
$$

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and the denominator goes to zero, think about what division does, and figure out the sign.

$$
\lim _{x \rightarrow 0} \frac{x-1}{x}=D N E
$$

As x gets close to zero, the denominator gets very tiny, and the numberator is close to 1 . Since a tiny, tiny, tiny number "goes into" 1 many, many, many times, the value of $\frac{x-1}{x}$ will get very large-but might be positive or negative depending on the sign of x.

$$
\lim _{x \rightarrow 0^{-}} \frac{x-1}{x}=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \frac{x-1}{x}=-\infty
$$

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and the denominator goes to zero, think about what division does, and figure out the sign.

$$
\lim _{x \rightarrow 0} \frac{x-1}{x}=D N E
$$

As x gets close to zero, the denominator gets very tiny, and the numberator is close to 1 . Since a tiny, tiny, tiny number "goes into" 1 many, many, many times, the value of $\frac{x-1}{x}$ will get very large-but might be positive or negative depending on the sign of x.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} \frac{x-1}{x}= & \infty \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \frac{x-1}{x}=-\infty \\
& \lim _{x \rightarrow 0} \frac{x-1}{x^{2}}=
\end{aligned}
$$

$$
\lim _{x \rightarrow-4^{-}} \frac{-3}{\sqrt{x^{2}}-4}=
$$

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and the denominator goes to zero, think about what division does, and figure out the sign.

$$
\lim _{x \rightarrow 0} \frac{x-1}{x}=D N E
$$

As x gets close to zero, the denominator gets very tiny, and the numberator is close to 1 . Since a tiny, tiny, tiny number "goes into" 1 many, many, many times, the value of $\frac{x-1}{x}$ will get very large-but might be positive or negative depending on the sign of x.

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} \frac{x-1}{x}=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \frac{x-1}{x}=-\infty \\
\lim _{x \rightarrow 0} \frac{x-1}{x^{2}}=-\infty
\end{gathered}
$$

$$
\lim _{x \rightarrow-4^{-}} \frac{-3}{\sqrt{x^{2}}-4}=
$$

A Few Strategies for Calculating Limits

For the limit of a fraction where the numerator goes to a non-zero number, and the denominator goes to zero, think about what division does, and figure out the sign.

$$
\lim _{x \rightarrow 0} \frac{x-1}{x}=D N E
$$

As x gets close to zero, the denominator gets very tiny, and the numberator is close to 1 . Since a tiny, tiny, tiny number "goes into" 1 many, many, many times, the value of $\frac{x-1}{x}$ will get very large-but might be positive or negative depending on the sign of x.

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} \frac{x-1}{x}=\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \frac{x-1}{x}=-\infty \\
\lim _{x \rightarrow 0} \frac{x-1}{x^{2}}=-\infty
\end{gathered}
$$

$$
\lim _{x \rightarrow-4^{-}} \frac{-3}{\sqrt{x^{2}}-4}=-\infty
$$

Suppose a lemonade stand diversifies to sell lemonade, raspberry juice, and raspberry lemonade. The prices of ingredients fluctuate, but the sale price of raspberry lemonade is always between the sale prices of lemonade and raspberry juice. One day, as a promotion, the stand sells lemonade and raspberry juice each for $\$ 1$ a cup. How much do they sell raspberry lemonade for on that day?

Suppose a lemonade stand diversifies to sell lemonade, raspberry juice, and raspberry lemonade. The prices of ingredients fluctuate, but the sale price of raspberry lemonade is always between the sale prices of lemonade and raspberry juice. One day, as a promotion, the stand sells lemonade and raspberry juice each for $\$ 1$ a cup. How much do they sell raspberry lemonade for on that day?

Always: lemonade \leq raspberry lemonade \leq raspberry juice

Suppose a lemonade stand diversifies to sell lemonade, raspberry juice, and raspberry lemonade. The prices of ingredients fluctuate, but the sale price of raspberry lemonade is always between the sale prices of lemonade and raspberry juice. One day, as a promotion, the stand sells lemonade and raspberry juice each for $\$ 1$ a cup. How much do they sell raspberry lemonade for on that day?

Always: lemonade \leq raspberry lemonade \leq raspberry juice

Today: lemonade $=\$ 1=$ raspberry juice

Suppose a lemonade stand diversifies to sell lemonade, raspberry juice, and raspberry lemonade. The prices of ingredients fluctuate, but the sale price of raspberry lemonade is always between the sale prices of lemonade and raspberry juice. One day, as a promotion, the stand sells lemonade and raspberry juice each for $\$ 1$ a cup. How much do they sell raspberry lemonade for on that day?

Always: lemonade \leq raspberry lemonade \leq raspberry juice

Today: lemonade $=\$ 1=$ raspberry juice

So, today also raspberry lemonade $=\$ 1$

Squeeze Theorem

Suppose, when x is near (but not necessarily equal to) a, we have functions $f(x), g(x)$, and $h(x)$ so that

$$
f(x) \leq g(x) \leq h(x)
$$

and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)$. Then $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} f(x)$.

Squeeze Theorem

Suppose, when x is near (but not necessarily equal to) a, we have functions $f(x), g(x)$, and $h(x)$ so that

$$
f(x) \leq g(x) \leq h(x)
$$

and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)$. Then $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} f(x)$.

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)
$$

Evaluate:

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)
$$

Evaluate:

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)
$$

Graph for $\sin (1 / \mathrm{x})$

Evaluate:

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)
$$

Evaluate:

$$
\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)
$$

Graph for $x^{\wedge} 2^{*} \sin (1 / x)$

$\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$

-1	\leq	$\sin \left(\frac{1}{x}\right)$	\leq	1
so $-x^{2}$	\leq	$x^{2} \sin \left(\frac{1}{x}\right)$	\leq	x^{2}
and also $\lim _{x \rightarrow 0}-x^{2}$	$=$	0	$=$	$\lim _{x \rightarrow 0} x^{2}$

$\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$

-1	\leq	$\sin \left(\frac{1}{x}\right)$	\leq
so $-x^{2}$	\leq	$x^{2} \sin \left(\frac{1}{x}\right)$	\leq

Therefore, by the Squeeze Theorem, $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$.
$\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$

-1	\leq	$\sin \left(\frac{1}{x}\right)$	\leq
so $-x^{2}$	\leq	$x^{2} \sin \left(\frac{1}{x}\right)$	\leq
and also $\lim _{x \rightarrow 0}-x^{2}$	$=$	0	x^{2}
$\lim _{x \rightarrow 0} x^{2}$			

Therefore, by the Squeeze Theorem, $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)=0$.

Squeeze Theorem

Suppose, when x is near (but not necessarily equal to) a, we have functions $f(x), g(x)$, and $h(x)$ so that

$$
f(x) \leq g(x) \leq h(x)
$$

and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)$. Then $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} f(x)$.

Limits at Infinity

End Behavior

We write:

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

to express that, as x grows larger and larger, $f(x)$ approaches L. Similarly, we write:

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

to express that, as x grows more and more strongly negative, $f(x)$ approaches L. If L is a number, we call $y=L$ a horizontal asymptote of $f(x)$.

Common Limits at Infinity

$\lim _{x \rightarrow \infty} 13=$
$\lim _{x \rightarrow-\infty} 13=$
$\lim _{x \rightarrow \infty} \frac{1}{x}=$
$\lim _{x \rightarrow-\infty} \frac{1}{x}=$
$\lim _{x \rightarrow \infty} x^{2}=$
$\lim _{x \rightarrow-\infty} x^{2}=$ $\lim _{x \rightarrow-\infty} x^{2 / 3}=$
$\lim _{x \rightarrow \infty} x^{3}=$
$\lim _{x \rightarrow-\infty} x^{3}=$
$\lim _{x \rightarrow-\infty} x^{5 / 3}=$

Common Limits at Infinity

$$
\lim _{x \rightarrow \infty} 13=13
$$

$\lim _{x \rightarrow-\infty} 13=13$
$\lim _{x \rightarrow \infty} \frac{1}{x}=$
$\lim _{x \rightarrow-\infty} \frac{1}{x}=$

$$
\lim _{x \rightarrow \infty} x^{2}=
$$

$$
\lim _{x \rightarrow-\infty} x^{5 / 3}=
$$

$$
\lim _{x \rightarrow-\infty} x^{2}=
$$

$$
\lim _{x \rightarrow-\infty} x^{2 / 3}=
$$

$$
\lim _{x \rightarrow \infty} x^{3}=
$$

$$
\lim _{x \rightarrow-\infty} x^{3}=
$$

Common Limits at Infinity

$$
\lim _{x \rightarrow \infty} 13=13
$$

$$
\lim _{x \rightarrow-\infty} 13=13
$$

$\lim _{x \rightarrow \infty} \frac{1}{x}=0$
$\lim _{x \rightarrow-\infty} \frac{1}{x}=0$

$$
\lim _{x \rightarrow \infty} x^{2}=
$$

$$
\lim _{x \rightarrow-\infty} x^{5 / 3}=
$$

$$
\lim _{x \rightarrow-\infty} x^{2}=
$$

$$
\lim _{x \rightarrow-\infty} x^{2 / 3}=
$$

$$
\lim _{x \rightarrow \infty} x^{3}=
$$

$$
\lim _{x \rightarrow-\infty} x^{3}=
$$

Common Limits at Infinity

$$
\lim _{x \rightarrow \infty} 13=13
$$

$$
\lim _{x \rightarrow-\infty} 13=13
$$

$\lim _{x \rightarrow \infty} \frac{1}{x}=0$
$\lim _{x \rightarrow-\infty} \frac{1}{x}=0$

$$
\lim _{x \rightarrow \infty} x^{2}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{5 / 3}=
$$

$$
\lim _{x \rightarrow-\infty} x^{2}=
$$

$$
\lim _{x \rightarrow-\infty} x^{2 / 3}=
$$

$$
\lim _{x \rightarrow \infty} x^{3}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{3}=
$$

Common Limits at Infinity

$$
\lim _{x \rightarrow \infty} 13=13
$$

$$
\lim _{x \rightarrow-\infty} 13=13
$$

$\lim _{x \rightarrow \infty} \frac{1}{x}=0$
$\lim _{x \rightarrow-\infty} \frac{1}{x}=0$

$$
\lim _{x \rightarrow \infty} x^{2}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{5 / 3}=
$$

$$
\lim _{x \rightarrow-\infty} x^{2}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{2 / 3}=
$$

$$
\lim _{x \rightarrow \infty} x^{3}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{3}=-\infty
$$

Common Limits at Infinity

$$
\lim _{x \rightarrow \infty} 13=13
$$

$$
\lim _{x \rightarrow-\infty} 13=13
$$

$\lim _{x \rightarrow \infty} \frac{1}{x}=0$
$\lim _{x \rightarrow-\infty} \frac{1}{x}=0$

$$
\lim _{x \rightarrow \infty} x^{2}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{5 / 3}=-\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{2}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{2 / 3}=
$$

$$
\lim _{x \rightarrow \infty} x^{3}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{3}=-\infty
$$

Common Limits at Infinity

$$
\lim _{x \rightarrow \infty} 13=13
$$

$$
\lim _{x \rightarrow-\infty} 13=13
$$

$\lim _{x \rightarrow \infty} \frac{1}{x}=0$
$\lim _{x \rightarrow-\infty} \frac{1}{x}=0$

$$
\lim _{x \rightarrow \infty} x^{2}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{5 / 3}=-\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{2}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{2 / 3}=\infty
$$

$$
\lim _{x \rightarrow \infty} x^{3}=\infty
$$

$$
\lim _{x \rightarrow-\infty} x^{3}=-\infty
$$

Arithmetic with Limits at Infinity

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x+\frac{x^{2}}{10}\right)= \\
& \lim _{x \rightarrow \infty}\left(x-\frac{x^{2}}{10}\right)= \\
& \lim _{x \rightarrow-\infty}\left(x^{2}+x^{3}+x^{4}\right)= \\
& \lim _{x \rightarrow-\infty}(x+13)\left(x^{2}+13\right)^{1 / 3}=
\end{aligned}
$$

Arithmetic with Limits at Infinity

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x+\frac{x^{2}}{10}\right)=\infty \\
& \lim _{x \rightarrow \infty}\left(x-\frac{x^{2}}{10}\right)= \\
& \lim _{x \rightarrow-\infty}\left(x^{2}+x^{3}+x^{4}\right)= \\
& \lim _{x \rightarrow-\infty}(x+13)\left(x^{2}+13\right)^{1 / 3}=
\end{aligned}
$$

Arithmetic with Limits at Infinity

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x+\frac{x^{2}}{10}\right)=\infty \\
& \lim _{x \rightarrow \infty}\left(x-\frac{x^{2}}{10}\right)=\lim _{x \rightarrow \infty} x\left(1-\frac{x}{10}\right) \\
& \lim _{x \rightarrow-\infty}\left(x^{2}+x^{3}+x^{4}\right)= \\
& \lim _{x \rightarrow-\infty}(x+13)\left(x^{2}+13\right)^{1 / 3}=
\end{aligned}
$$

Arithmetic with Limits at Infinity

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x+\frac{x^{2}}{10}\right)=\infty \\
& \lim _{x \rightarrow \infty}\left(x-\frac{x^{2}}{10}\right)=\lim _{x \rightarrow \infty} x\left(1-\frac{x}{10}\right)=-\infty \\
& \lim _{x \rightarrow-\infty}\left(x^{2}+x^{3}+x^{4}\right)= \\
& \lim _{x \rightarrow-\infty}(x+13)\left(x^{2}+13\right)^{1 / 3}=
\end{aligned}
$$

Arithmetic with Limits at Infinity

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x+\frac{x^{2}}{10}\right)=\infty \\
& \lim _{x \rightarrow \infty}\left(x-\frac{x^{2}}{10}\right)=\lim _{x \rightarrow \infty} x\left(1-\frac{x}{10}\right)=-\infty \\
& \lim _{x \rightarrow-\infty}\left(x^{2}+x^{3}+x^{4}\right)=\lim _{x \rightarrow-\infty} x^{4}\left(\frac{1}{x^{2}}+\frac{1}{x}+1\right) \\
& \lim _{x \rightarrow-\infty}(x+13)\left(x^{2}+13\right)^{1 / 3}=
\end{aligned}
$$

Arithmetic with Limits at Infinity

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x+\frac{x^{2}}{10}\right)=\infty \\
& \lim _{x \rightarrow \infty}\left(x-\frac{x^{2}}{10}\right)=\lim _{x \rightarrow \infty} x\left(1-\frac{x}{10}\right)=-\infty \\
& \lim _{x \rightarrow-\infty}\left(x^{2}+x^{3}+x^{4}\right)=\lim _{x \rightarrow-\infty} x^{4}\left(\frac{1}{x^{2}}+\frac{1}{x}+1\right)=\infty \\
& \lim _{x \rightarrow-\infty}(x+13)\left(x^{2}+13\right)^{1 / 3}=
\end{aligned}
$$

Arithmetic with Limits at Infinity

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(x+\frac{x^{2}}{10}\right)=\infty \\
& \lim _{x \rightarrow \infty}\left(x-\frac{x^{2}}{10}\right)=\lim _{x \rightarrow \infty} x\left(1-\frac{x}{10}\right)=-\infty \\
& \lim _{x \rightarrow-\infty}\left(x^{2}+x^{3}+x^{4}\right)=\lim _{x \rightarrow-\infty} x^{4}\left(\frac{1}{x^{2}}+\frac{1}{x}+1\right)=\infty \\
& \lim _{x \rightarrow-\infty}(x+13)\left(x^{2}+13\right)^{1 / 3}=-\infty
\end{aligned}
$$

Calculating Limits at Infinity

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{x^{3}}
$$

Calculating Limits at Infinity

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{x^{3}}
$$

Trick: factor out largest power of denominator.

Calculating Limits at Infinity

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{x^{3}}
$$

Trick: factor out largest power of denominator.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{x^{3}} & =\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+1}{x^{3}}\left(\frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{2}{x^{2}}+\frac{1}{x^{3}}}{1}
\end{aligned}
$$

Now, you can do algebra

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} \frac{2}{x^{2}}+\lim _{x \rightarrow \infty} \frac{1}{x^{3}}}{\lim _{x \rightarrow \infty} 1} \\
& =\frac{0+0+0}{1}=0
\end{aligned}
$$

Calculating Limits at Infinity

$$
\lim _{x \rightarrow-\infty}\left(x^{7 / 3}-x^{5 / 3}\right)
$$

Calculating Limits at Infinity

$$
\lim _{x \rightarrow-\infty}\left(x^{7 / 3}-x^{5 / 3}\right)
$$

Again: factor out largest power of x.

Calculating Limits at Infinity

$$
\lim _{x \rightarrow-\infty}\left(x^{7 / 3}-x^{5 / 3}\right)
$$

Again: factor out largest power of x.

$$
\begin{aligned}
\left(x^{7 / 3}-x^{5 / 3}\right) & =x^{7 / 3}\left(1-\frac{1}{x^{2 / 3}}\right) \\
\lim _{x \rightarrow-\infty} x^{7 / 3} & =-\infty \\
\lim _{x \rightarrow-\infty}\left(1-\frac{1}{x^{2 / 3}}\right) & =1
\end{aligned}
$$

Calculating Limits at Infinity

$$
\lim _{x \rightarrow-\infty}\left(x^{7 / 3}-x^{5 / 3}\right)
$$

Again: factor out largest power of x.

$$
\begin{aligned}
\left(x^{7 / 3}-x^{5 / 3}\right) & =x^{7 / 3}\left(1-\frac{1}{x^{2 / 3}}\right) \\
\lim _{x \rightarrow-\infty} x^{7 / 3} & =-\infty \\
\lim _{x \rightarrow-\infty}\left(1-\frac{1}{x^{2 / 3}}\right) & =1
\end{aligned}
$$

So, $\lim _{x \rightarrow-\infty}\left(x^{7 / 3}-x^{5 / 3}\right)=-\infty$

Calculating Limits at Infinity

Suppose the height of a bouncing ball is given by $h(t)=\frac{\sin (t)+1}{t}$, for $t \geq 1$. What happens to the height over a long period of time?

Calculating Limits at Infinity

Suppose the height of a bouncing ball is given by $h(t)=\frac{\sin (t)+1}{t}$, for $t \geq 1$. What happens to the height over a long period of time?

$$
\begin{array}{rrrr}
\leq & \frac{\sin (t)+1}{t} & \leq & \frac{2}{t} \\
= & 0 & = & \lim _{t \rightarrow \infty} \frac{2}{t}
\end{array}
$$

Calculating Limits at Infinity

Suppose the height of a bouncing ball is given by $h(t)=\frac{\sin (t)+1}{t}$, for $t \geq 1$. What happens to the height over a long period of time?

So, by the Squeeze Theorem,

$$
\lim _{t \rightarrow \infty} \frac{\sin (t)+1}{t}=0
$$

Tough One

$$
\lim _{x \rightarrow \infty} \sqrt{x^{4}+x^{2}+1}-\sqrt{x^{4}+3 x^{2}}
$$

Tough One

$$
\lim _{x \rightarrow \infty} \sqrt{x^{4}+x^{2}+1}-\sqrt{x^{4}+3 x^{2}}
$$

Multiply function by conjugate:

$$
\begin{aligned}
& \left(\sqrt{x^{4}+x^{2}+1}-\sqrt{x^{4}+3 x^{2}}\right)\left(\frac{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}\right) \\
& =\frac{-2 x^{2}+1}{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}
\end{aligned}
$$

Tough One

$$
\lim _{x \rightarrow \infty} \sqrt{x^{4}+x^{2}+1}-\sqrt{x^{4}+3 x^{2}}
$$

Multiply function by conjugate:

$$
\begin{aligned}
& \left(\sqrt{x^{4}+x^{2}+1}-\sqrt{x^{4}+3 x^{2}}\right)\left(\frac{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}\right) \\
& =\frac{-2 x^{2}+1}{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}
\end{aligned}
$$

Factor out highest power: x^{2} (same as $\sqrt{x^{4}}$)

$$
\begin{aligned}
& \frac{-2 x^{2}+1}{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}\left(\frac{1 / x^{2}}{1 / \sqrt{x^{4}}}\right) \\
& =\frac{-2+\frac{1}{x^{2}}}{\sqrt{1+\frac{1}{x^{2}}+\frac{1}{x^{4}}}+\sqrt{1+\frac{3}{x^{2}}}}
\end{aligned}
$$

Tough One

$$
\lim _{x \rightarrow \infty} \sqrt{x^{4}+x^{2}+1}-\sqrt{x^{4}+3 x^{2}}
$$

Multiply function by conjugate:

$$
\begin{aligned}
& \left(\sqrt{x^{4}+x^{2}+1}-\sqrt{x^{4}+3 x^{2}}\right)\left(\frac{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}\right) \\
& =\frac{-2 x^{2}+1}{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}
\end{aligned}
$$

Factor out highest power: x^{2} (same as $\sqrt{x^{4}}$)

$$
\begin{aligned}
& \frac{-2 x^{2}+1}{\sqrt{x^{4}+x^{2}+1}+\sqrt{x^{4}+3 x^{2}}}\left(\frac{1 / x^{2}}{1 / \sqrt{x^{4}}}\right) \\
& =\frac{-2+\frac{1}{x^{2}}}{\sqrt{1+\frac{1}{x^{2}}+\frac{1}{x^{4}}}+\sqrt{1+\frac{3}{x^{2}}}} \\
& \lim _{x \rightarrow \infty} \frac{-2+\frac{1}{x^{2}}}{\sqrt{1+\frac{1}{x^{2}}+\frac{1}{x^{4}}}+\sqrt{1+\frac{3}{x^{2}}}}=\frac{-2+0}{\sqrt{1+0+0}+\sqrt{1+0}}=\frac{-2}{2}=-1
\end{aligned}
$$

Evaluate $\lim _{x \rightarrow-\infty} \frac{\sqrt{3+x^{2}}}{3 x}$

Evaluate $\lim _{x \rightarrow-\infty} \frac{\sqrt{3+x^{2}}}{3 x}$
We factor out the largest power of the denominator, which is is x.

$$
\lim _{x \rightarrow-\infty} \frac{\sqrt{3+x^{2}}}{3 x}\left(\frac{1 / x}{1 / x}\right)=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{3+x^{2}}}{x}}{3}
$$

When $x<0, \sqrt{x^{2}}=|x|=-x$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{1}{3} \frac{\sqrt{3+x^{2}}}{-\sqrt{x^{2}}} \\
& =\lim _{x \rightarrow-\infty}-\frac{1}{3} \sqrt{\frac{3+x^{2}}{x^{2}}} \\
& =\lim _{x \rightarrow-\infty}-\frac{1}{3} \sqrt{\frac{3}{x^{2}}+1} \\
& =-\frac{1}{3}
\end{aligned}
$$

Continuity

Definition
A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 0 ? Is $f(x)$ continuous at 1 ?

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 0 ? Yes. Is $f(x)$ continuous at 1 ?

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 0 ? Yes. Is $f(x)$ continuous at 1 ? No.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 0 ? Yes. Is $f(x)$ continuous at 1 ? No.

This kind of discontinuity is called removable.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 3 ?

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 3 ? No.

This kind of discontinuity is called a jump.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$. A function $f(x)$ is continuous from the left at a point a if $\lim _{x \rightarrow a^{-}} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 3 ? No.

This kind of discontinuity is called a jump.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.
A function $f(x)$ is continuous from the left at a point a if $\lim _{x \rightarrow a^{-}} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 3 ? No.
Is $f(x)$ continuous from the left at 3 ?
Is $f(x)$ continuous from the right at 3 ?

This kind of discontinuity is called a jump.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.
A function $f(x)$ is continuous from the left at a point a if $\lim _{x \rightarrow a^{-}} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 3 ? No.
Is $f(x)$ continuous from the left at 3 ?
Yes.
Is $f(x)$ continuous from the right at 3 ?

This kind of discontinuity is called a jump.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.
A function $f(x)$ is continuous from the left at a point a if $\lim _{x \rightarrow a^{-}} f(x)$ exists AND is equal to $f(a)$.

Is $f(x)$ continuous at 3 ? No.
Is $f(x)$ continuous from the left at 3 ?
Yes.
Is $f(x)$ continuous from the right at 3 ? No.

This kind of discontinuity is called a jump.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$. A function $f(x)$ is continuous from the left at a point a if $\lim _{x \rightarrow a^{-}} f(x)$ exists AND is equal to $f(a)$.

Since no one-sided limits exist at 1 , there's no hope for continuity.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$. A function $f(x)$ is continuous from the left at a point a if $\lim _{x \rightarrow a^{-}} f(x)$ exists AND is equal to $f(a)$.

Since no one-sided limits exist at 1 , there's no hope for continuity.

This is called an infinite discontinuity.

Continuity

Definition

A function $f(x)$ is continuous at a point a if $\lim _{x \rightarrow a} f(x)$ exists AND is equal to $f(a)$.
A function $f(x)$ is continuous from the left at a point a if $\lim _{x \rightarrow a^{-}} f(x)$ exists AND is equal to $f(a)$.

$$
f(x)=\left\{\begin{array}{lll}
x^{2} \sin \left(\frac{1}{x}\right) & , & x \neq 0 \\
0 & , & x=0
\end{array}\right.
$$

Is $f(x)$ continuous at 0 ?

Continuity

Definition
A function $f(x)$ is continuous at a point a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Functions made by adding, subtracting, multiplying, dividing, and taking appropriate powers of polynomials are continuous for every point in their domain.

Continuity

Definition
A function $f(x)$ is continuous at a point a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Functions made by adding, subtracting, multiplying, dividing, and taking appropriate powers of polynomials are continuous for every point in their domain. Example:

$$
f(x)=\frac{x^{2}}{2 x-10}-\left(\frac{x^{2}+2 x-1}{x-1}+\frac{\sqrt[5]{25-x}-\frac{1}{x}}{x+2}\right)^{1 / 3}
$$

Continuity

Definition
A function $f(x)$ is continuous at a point a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Functions made by adding, subtracting, multiplying, dividing, and taking appropriate powers of polynomials are continuous for every point in their domain. Example:

$$
f(x)=\frac{x^{2}}{2 x-10}-\left(\frac{x^{2}+2 x-1}{x-1}+\frac{\sqrt[5]{25-x}-\frac{1}{x}}{x+2}\right)^{1 / 3}
$$

$f(x)$ is continuous at every point except $5,1,0$, and -2 .

Continuity

Definition
A function $f(x)$ is continuous at a point a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Functions made by adding, subtracting, multiplying, dividing, and taking appropriate powers of polynomials are continuous for every point in their domain. Example:

$$
f(x)=\frac{x^{2}}{2 x-10}-\left(\frac{x^{2}+2 x-1}{x-1}+\frac{\sqrt[5]{25-x}-\frac{1}{x}}{x+2}\right)^{1 / 3}
$$

$f(x)$ is continuous at every point except $5,1,0$, and -2 .
A continuous function is continuous for every point in \mathbb{R}.

Continuity

Definition

A function $f(x)$ is continuous at a point a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Functions made by adding, subtracting, multiplying, dividing, and taking appropriate powers of polynomials are continuous for every point in their domain. Example:

$$
f(x)=\frac{x^{2}}{2 x-10}-\left(\frac{x^{2}+2 x-1}{x-1}+\frac{\sqrt[5]{25-x}-\frac{1}{x}}{x+2}\right)^{1 / 3}
$$

$f(x)$ is continuous at every point except $5,1,0$, and -2 .
A continuous function is continuous for every point in \mathbb{R}.
We say $f(x)$ is continuous over (a, b) if it is continuous at every point in (a, b). So, $f(x)$ is continuous over its domain, $(-\infty,-2) \cup(-2,0) \cup(0,1) \cup(1,5) \cup(5, \infty)$.

Continuity

Definition
A function $f(x)$ is continuous at a point a if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

Common Functions

Functions of the following types are continuous over their domains:

- polynomials and rationals
- roots and powers
- trig functions and their inverses
- exponential and logarithm
- The products, sums, differences, quotients, powers, and compositions of continuous functions

Where is the following function continuous?

$$
f(x)=\left(\frac{\sin x}{(x-2)(x+3)}+e^{\sqrt{x}}\right)^{3}
$$

Where is the following function continuous?

$$
f(x)=\left(\frac{\sin x}{(x-2)(x+3)}+e^{\sqrt{x}}\right)^{3}
$$

Over its domain: $[0,2) \cup(2, \infty)$.

Where is the following function continuous?

$$
f(x)=\left(\frac{\sin x}{(x-2)(x+3)}+e^{\sqrt{x}}\right)^{3}
$$

Over its domain: $[0,2) \cup(2, \infty)$.

Lots of examples in notes.

Continuity in Nature

Baby weight chart, 1909
Source: http://gallery.nen.gov.uk/asset668105-.html

Continuity in Nature

Graph of luminosity of a star over time, after star explodes.
Data from 1987. Source:
http://abyss.uoregon.edu/ ~js/ast122/lectures/ lec18.html

A Technical Point

Definition
A function $f(x)$ is continuous on the closed interval $[a, b]$ if:
$f(x)$ is continuous over (a, b), and
$f(x)$ is continuous form the left at , and
$f(x)$ is continuous form the right at

a	
a	b

A Technical Point

Definition
A function $f(x)$ is continuous on the closed interval $[a, b]$ if:
$f(x)$ is continuous over (a, b), and
$f(x)$ is continuous form the left at , and
$f(x)$ is continuous form the right at

A Technical Point

Definition
A function $f(x)$ is continuous on the closed interval $[a, b]$ if:
$f(x)$ is continuous over (a, b), and
$f(x)$ is continuous form the left at b, and
$f(x)$ is continuous form the right at

A Technical Point

Definition
A function $f(x)$ is continuous on the closed interval $[a, b]$ if:
$f(x)$ is continuous over (a, b), and $f(x)$ is continuous form the left at b, and $f(x)$ is continuous form the right at a

Intermediate Value Theorem (IVT)

Theorem:
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Intermediate Value Theorem (IVT)

Theorem:
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Intermediate Value Theorem (IVT)

Theorem:
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Intermediate Value Theorem (IVT)

Theorem:
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Intermediate Value Theorem (IVT)

Theorem:
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Intermediate Value Theorem (IVT)

Theorem:
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Intermediate Value Theorem (IVT)

Theorem:
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Intermediate Value Theorem (IVT)

Theorem:
Let $a<b$ and let $f(x)$ be continuous over $[a, b]$. If y is any number between $f(a)$ and $f(b)$, then there exists c in (a, b) such that $f(c)=y$.

Suppose your favorite number is 45.54 . At noon, your car is parked, and at 1 pm you're driving 100kph. By the Intermediate Value Theorem, at some point between noon and 1 pm you were going exactly 45.54 kph .

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$.

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$. Let's find some points:

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$. Let's find some points:

$$
f(0)=2
$$

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$. Let's find some points:

$$
f(0)=2 \quad f(1)=1
$$

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$. Let's find some points:

$$
f(0)=2 \quad f(1)=1 \quad f(-1)=-1
$$

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$.
Let's find some points:

$$
f(0)=2 \quad f(1)=1 \quad f(-1)=-1
$$

So, there has to be a root between $x=-1$ and $x=0$

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$. Let's find some points:

$$
\begin{array}{rll}
f(0)=2 & f(1)=1 & f(-1)=-1 \\
f(-.5)=1.84375 & &
\end{array}
$$

So, there has to be a root between $x=-1$ and $x=0$

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$.
Let's find some points:

$$
\begin{array}{rl}
f(0)=2 & f(1)=1 \\
f(-.5)=1.84375 &
\end{array}
$$

So, there has to be a root between $x=-1$ and $x=-0.5$

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$. Let's find some points:

$$
\begin{array}{ccc}
f(0)=2 & f(1)=1 & f(-1)=-1 \\
f(-.5)=1.84375 & f(-0.75) \approx 1.1298 &
\end{array}
$$

So, there has to be a root between $x=-1$ and $x=-0.5$

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$. Let's find some points:

$$
\begin{array}{ccc}
f(0)=2 & f(1)=1 & f(-1)=-1 \\
f(-.5)=1.84375 & f(-0.75) \approx 1.1298 &
\end{array}
$$

So, there has to be a root between $x=-1$ and $x=-0.75$.

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$.
Let's find some points:

$$
\begin{array}{ccc}
f(0)=2 & f(1)=1 & f(-1)=-1 \\
f(-.5)=1.84375 & f(-0.75) \approx 1.1298 & f(-.9)=0.09731
\end{array}
$$

So, there has to be a root between $x=-1$ and $x=-0.75$.

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$.
Let's find some points:

$$
\begin{array}{ccc}
f(0)=2 & f(1)=1 & f(-1)=-1 \\
f(-.5)=1.84375 & f(-0.75) \approx 1.1298 & f(-.9)=0.09731
\end{array}
$$

So, there has to be a root between $x=-1$ and $x=-0.9$.

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$.
Let's find some points:

$$
\begin{array}{ccc}
f(0)=2 & f(1)=1 & f(-1)=-1 \\
f(-.5)=1.84375 & f(-0.75) \approx 1.1298 & f(-.9)=0.09731
\end{array}
$$

So, there has to be a root between $x=-1$ and $x=-0.9$.

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$.
Let's find some points:

$$
\begin{array}{lcr}
f(0)=2 & f(1)=1 & f(-1)=-1 \\
.84375 & f(-0.75) \approx 1.1298 & f(-.9)=0.09731 \\
& f(-.95) \approx-0.4 &
\end{array}
$$

So, there has to be a root between $x=-0.95$ and $\quad x=-0.9$.

Using IVT to Find Roots: "Bisection Method"

Let $f(x)=x^{5}-2 x^{4}+2$. Find any value x for which $f(x)=0$.
Let's find some points:

$$
\begin{array}{ccr}
f(0)=2 & f(1)=1 & f(-1)=-1 \\
f(-.5)=1.84375 & f(-0.75) \approx 1.1298 & f(-.9) \\
& f(-.95) \approx-0.4 &
\end{array}
$$

So, there has to be a root between $x=-0.95$ and $\quad x=-0.9$.
We can say there is a root at approximately $x=-0.9$

Don't use a calculator for these problems: use values that you can easily calculate. Use the Intermediate Value Theorem to show that there exists some solution to the equation $\ln x \cdot e^{x}=4$ and give a reasonable interval where that solution might occur.

Use the Intermediate Value Theorem to give a reasonable interval where the following is true: $e^{x}=\sin (x)$

Is there any value of x so that $\sin x=\cos (2 x)+\frac{1}{4}$?

Don't use a calculator for these problems: use values that you can easily calculate. Use the Intermediate Value Theorem to show that there exists some solution to the equation $\ln x \cdot e^{x}=4$ and give a reasonable interval where that solution might occur.

- The function $f(x)=\ln x \cdot e^{x}$ is continuous over its domain, which is $(0, \infty)$. In particular, then, it is continuous over the interval $(1, e)$.
- $f(1)=\ln (1) e=0 \cdot e=0$ and $f(e)=\ln (e) \cdot e^{e}=e^{e}$. Since $e>2$, we know $f(e)=e^{e}>2^{2}=4$.
- Then 4 is between $f(1)$ and $f(e)$.
- By the Intermediate Value Theorem, $f(c)=4$ for some c in $(1, e)$.

Use the Intermediate Value Theorem to give a reasonable interval where the following is true: $e^{x}=\sin (x)$

Is there any value of x so that $\sin x=\cos (2 x)+\frac{1}{4}$?

Don't use a calculator for these problems: use values that you can easily calculate. Use the Intermediate Value Theorem to show that there exists some solution to the equation $\ln x \cdot e^{x}=4$ and give a reasonable interval where that solution might occur.

- The function $f(x)=\ln x \cdot e^{x}$ is continuous over its domain, which is $(0, \infty)$. In particular, then, it is continuous over the interval $(1, e)$.
- $f(1)=\ln (1) e=0 \cdot e=0$ and $f(e)=\ln (e) \cdot e^{e}=e^{e}$. Since $e>2$, we know $f(e)=e^{e}>2^{2}=4$.
- Then 4 is between $f(1)$ and $f(e)$.
- By the Intermediate Value Theorem, $f(c)=4$ for some c in $(1, e)$.

Use the Intermediate Value Theorem to give a reasonable interval where the following is true: $e^{x}=\sin (x)$
We can rearrange this: let $f(x)=e^{x}-\sin (x)$, and note $f(x)$ has roots exactly when the above equation is true.

- The function $f(x)=e^{x}-\sin x$ is continuous over its domain, which is all real numbers. In particular, then, it is continuous over the interval $\left(-\frac{3 \pi}{2}, e\right)$.
- $f(0)=e^{0}-\sin 0=1-0=0$ and $f\left(-\frac{3 \pi}{2}\right)=e^{-\frac{3 \pi}{2}}-\sin \left(\frac{-3 \pi}{2}\right)=e^{-\frac{3 \pi}{2}}-1<e^{0}-1=1-1=0$.
- Then 0 is between $f(0)$ and $f\left(-\frac{3 \pi}{2}\right)$.
- By the Intermediate Value Theorem, $f(c)=0$ for some c in $\left(-\frac{3 \pi}{2}, 0\right)$.
- Therefore, $e^{c}=\sin c$ for some c in $\left(-\frac{3 \pi}{2}, 0\right)$.

Is there any value of x so that $\sin x=\cos (2 x)+\frac{1}{4}$?

Don't use a calculator for these problems: use values that you can easily calculate. Use the Intermediate Value Theorem to show that there exists some solution to the equation $\ln x \cdot e^{x}=4$ and give a reasonable interval where that solution might occur.

- The function $f(x)=\ln x \cdot e^{x}$ is continuous over its domain, which is $(0, \infty)$. In particular, then, it is continuous over the interval $(1, e)$.
- $f(1)=\ln (1) e=0 \cdot e=0$ and $f(e)=\ln (e) \cdot e^{e}=e^{e}$. Since $e>2$, we know $f(e)=e^{e}>2^{2}=4$.
- Then 4 is between $f(1)$ and $f(e)$.
- By the Intermediate Value Theorem, $f(c)=4$ for some c in $(1, e)$.

Use the Intermediate Value Theorem to give a reasonable interval where the following is true: $e^{x}=\sin (x)$
We can rearrange this: let $f(x)=e^{x}-\sin (x)$, and note $f(x)$ has roots exactly when the above equation is true.

- The function $f(x)=e^{x}-\sin x$ is continuous over its domain, which is all real numbers. In particular, then, it is continuous over the interval $\left(-\frac{3 \pi}{2}, e\right)$.
- $f(0)=e^{0}-\sin 0=1-0=0$ and $f\left(-\frac{3 \pi}{2}\right)=e^{-\frac{3 \pi}{2}}-\sin \left(\frac{-3 \pi}{2}\right)=e^{-\frac{3 \pi}{2}}-1<e^{0}-1=1-1=0$.
- Then 0 is between $f(0)$ and $f\left(-\frac{3 \pi}{2}\right)$.
- By the Intermediate Value Theorem, $f(c)=0$ for some c in $\left(-\frac{3 \pi}{2}, 0\right)$.
- Therefore, $e^{c}=\sin c$ for some c in $\left(-\frac{3 \pi}{2}, 0\right)$.

Is there any value of x so that $\sin x=\cos (2 x)+\frac{1}{4}$?
Yes, somewhere between 0 and $\frac{\pi}{2}$.

Is the following reasoning correct?

- $f(x)=\tan x$ is continuous over its domain, because it is a trigonometric function.
- In particular, $f(x)$ is continuous over the interval $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$.
- $f\left(\frac{\pi}{4}\right)=1$, and $f\left(\frac{3 \pi}{4}\right)=-1$.
- Since $f\left(\frac{3 \pi}{4}\right)<0<f\left(\frac{\pi}{4}\right)$, by the Intermediate Value Theorem, there exists some number c in the interval $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$ such that $f(c)=0$.

Is the following reasoning correct?

- $f(x)=\tan x$ is continuous over its domain, because it is a trigonometric function.
- In particular, $f(x)$ is continuous over the interval $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$.
- $f\left(\frac{\pi}{4}\right)=1$, and $f\left(\frac{3 \pi}{4}\right)=-1$.
- Since $f\left(\frac{3 \pi}{4}\right)<0<f\left(\frac{\pi}{4}\right)$, by the Intermediate Value Theorem, there exists some number c in the interval $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$ such that $f(c)=0$.

Is the following reasoning correct?

- $f(x)=\tan x$ is continuous over its domain, because it is a trigonometric function.
- In particular, $f(x)$ is continuous over the interval $\left[\frac{\pi}{4}, \frac{3 \pi}{4}\right]$.

FALSE

- $f\left(\frac{\pi}{4}\right)=1$, and $f\left(\frac{3 \pi}{4}\right)=-1$.
- Since $f\left(\frac{3 \pi}{4}\right)<0<f\left(\frac{\pi}{4}\right)$, by the Intermediate Value Theorem, there exists some number c in the interval $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right)$ such that $f(c)=0$.

Let's Review

Suppose $f(x)$ is continuous at $x=1$. Does $f(x)$ have to be defined at $x=1$?

Suppose $f(x)$ is continuous at $x=1$. Does $f(x)$ have to be defined at $x=1$? Yes. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $f(1)$ must exist.

Suppose $f(x)$ is continuous at $x=1$. Does $f(x)$ have to be defined at $x=1$? Yes. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $f(1)$ must exist.

Suppose $f(x)$ is continuous at $x=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=30$.
True or false: $\lim _{x \rightarrow 1^{+}} f(x)=30$.

Suppose $f(x)$ is continuous at $x=1$. Does $f(x)$ have to be defined at $x=1$? Yes. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $f(1)$ must exist.

Suppose $f(x)$ is continuous at $x=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=30$.
True or false: $\lim _{x \rightarrow 1^{+}} f(x)=30$.
True. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $\lim _{x \rightarrow 1} f(x)$ must exist. That means both one-sided limits exist, and are equal to each other.

Suppose $f(x)$ is continuous at $x=1$. Does $f(x)$ have to be defined at $x=1$? Yes. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $f(1)$ must exist.

Suppose $f(x)$ is continuous at $x=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=30$.
True or false: $\lim _{x \rightarrow 1^{+}} f(x)=30$.
True. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $\lim _{x \rightarrow 1} f(x)$ must exist. That means both one-sided limits exist, and are equal to each other.

Suppose $f(x)$ is continuous at $x=1$ and $f(1)=22$. What is $\lim _{x \rightarrow 1} f(x)$?

Suppose $f(x)$ is continuous at $x=1$. Does $f(x)$ have to be defined at $x=1$? Yes. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $f(1)$ must exist.

Suppose $f(x)$ is continuous at $x=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=30$.
True or false: $\lim _{x \rightarrow 1^{+}} f(x)=30$.
True. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $\lim _{x \rightarrow 1} f(x)$ must exist. That means both one-sided limits exist, and are equal to each other.

Suppose $f(x)$ is continuous at $x=1$ and $f(1)=22$. What is $\lim _{x \rightarrow 1} f(x)$? $22=f(1)=\lim _{x \rightarrow 1} f(x)$.

Suppose $f(x)$ is continuous at $x=1$. Does $f(x)$ have to be defined at $x=1$? Yes. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $f(1)$ must exist.

Suppose $f(x)$ is continuous at $x=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=30$.
True or false: $\lim _{x \rightarrow 1^{+}} f(x)=30$.
True. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $\lim _{x \rightarrow 1} f(x)$ must exist. That means both one-sided limits exist, and are equal to each other.

Suppose $f(x)$ is continuous at $x=1$ and $f(1)=22$. What is $\lim _{x \rightarrow 1} f(x)$? $22=f(1)=\lim _{x \rightarrow 1} f(x)$.

Suppose $\lim _{x \rightarrow 1} f(x)=2$. Must it be true that $f(1)=2$?

Suppose $f(x)$ is continuous at $x=1$. Does $f(x)$ have to be defined at $x=1$? Yes. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $f(1)$ must exist.

Suppose $f(x)$ is continuous at $x=1$ and $\lim _{x \rightarrow 1^{-}} f(x)=30$.
True or false: $\lim _{x \rightarrow 1^{+}} f(x)=30$.
True. Since $f(x)$ is continuous at $x=1, \lim _{x \rightarrow 1} f(x)=f(1)$, so $\lim _{x \rightarrow 1} f(x)$ must exist. That means both one-sided limits exist, and are equal to each other.

Suppose $f(x)$ is continuous at $x=1$ and $f(1)=22$. What is $\lim _{x \rightarrow 1} f(x)$?
$22=f(1)=\lim _{x \rightarrow 1} f(x)$.

Suppose $\lim _{x \rightarrow 1} f(x)=2$. Must it be true that $f(1)=2$?
No. In order to determine the limit as x goes to 1 , we ignore $f(1)$. Perhaps every $f(x)$ is not defined at 1 .

$$
f(x)= \begin{cases}a x^{2} & x \geq 1 \\ 3 x & x<1\end{cases}
$$

For which value(s) of a is $f(x)$ continuous?

$$
f(x)= \begin{cases}a x^{2} & x \geq 1 \\ 3 x & x<1\end{cases}
$$

For which value(s) of a is $f(x)$ continuous?

We need $a x^{2}=3 x$ when $x=1$, so $a=3$.

$$
f(x)= \begin{cases}\frac{\sqrt{3} x+3}{x^{2}-3} & x \neq \pm \sqrt{3} \\ a & x= \pm \sqrt{3}\end{cases}
$$

For which value(s) of a is $f(x)$ continuous at $x=-\sqrt{3}$? For which value(s) of a is $f(x)$ continuous at $x=\sqrt{3}$?

$$
f(x)= \begin{cases}\frac{\sqrt{3} x+3}{x^{2}-3} & x \neq \pm \sqrt{3} \\ a & x= \pm \sqrt{3}\end{cases}
$$

For which value(s) of a is $f(x)$ continuous at $x=-\sqrt{3}$?
By the definition of continuity, if $f(x)$ is continuous at $x=-\sqrt{3}$, then $f(-\sqrt{3})=\lim _{x \rightarrow-\sqrt{3}} f(x)$. Note $f(-\sqrt{3})=a$, and when x is close to (but not equal to) $-\sqrt{3}$, then $f(x)=\frac{\sqrt{3} x+3}{x^{2}-3}$.

$$
\begin{aligned}
f(-\sqrt{3}) & =\lim _{x \rightarrow-\sqrt{3}} f(x) \\
a & =\lim _{x \rightarrow-\sqrt{3}} \frac{\sqrt{3} x+3}{x^{2}-3}=\lim _{x \rightarrow-\sqrt{3}} \frac{\sqrt{3}(x+\sqrt{3})}{(x+\sqrt{3})(x-\sqrt{3})} \\
& =\lim _{x \rightarrow-\sqrt{3}} \frac{\sqrt{3}}{x-\sqrt{3}}=\frac{\sqrt{3}}{-\sqrt{3}-\sqrt{3}}=-\frac{1}{2}
\end{aligned}
$$

So we can use $a=-\frac{1}{2}$ to make $f(x)$ continuous at $x=-\sqrt{3}$.
For which value(s) of a is $f(x)$ continuous at $x=\sqrt{3}$?

$$
f(x)= \begin{cases}\frac{\sqrt{3} x+3}{x^{2}-3} & x \neq \pm \sqrt{3} \\ a & x= \pm \sqrt{3}\end{cases}
$$

For which value(s) of a is $f(x)$ continuous at $x=-\sqrt{3}$?
For which value(s) of a is $f(x)$ continuous at $x=\sqrt{3}$?
By the definition of continuity, if $f(x)$ is continuous at $x=\sqrt{3}$, then $f(\sqrt{3})=\lim _{x \rightarrow \sqrt{3}} f(x)$. When x is close to (but not equal to) $\sqrt{3}$, then $f(x)=\frac{\sqrt{3} x+3}{x^{2}-3}$. However, as x approaches $\sqrt{3}$, the denominator of this expression gets closer and closer to zero, while the top gets closer and closer to 6 . So, this limit does not exist. Therefore, no value of a will make $f(x)$ continuous at $x=\sqrt{3}$.

For the next batch of slides, see http://www.math.ubc.ca/~elyse/100/2016/Deriv_Conceptual.pdf

