Approximating a Function

Approximating a Function

Approximating a Function

Approximating a Function

Constant Approximation
We can approximate $f(x)$ near a point a by

$$
f(x) \approx f(a)
$$

Constant approx: $\sin (0.2) \approx 0$;
Google: $\sin (0.2)=0.19866933079 \ldots$

Approximating a Function

Constant Approximation
We can approximate $f(x)$ near a point a by

$$
f(x) \approx f(a)
$$

Constant approx: $\sin (0.2) \approx 0$;
Google: $\sin (0.2)=0.19866933079 \ldots$

Approximating a Function

Approximating a Function

Approximating a Function

Linear Approximation (Linearization)
We can approximate $f(x)$ near a point a by the tangent line to $f(x)$ at a, namely

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Approximating a Function

Linear Approximation (Linearization)
We can approximate $f(x)$ near a point a by the tangent line to $f(x)$ at a, namely

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Linear approx: $\sin (0.2) \approx 0.2$
Google: $\sin (0.2)=0.19866933079 \ldots$

Constant and Linear Approximations

To find a linear approximation of $f(x)$ at a particular point x : -pick a point a near to x, such that
$-f(a)$ and $f^{\prime}(a)$ are easy to calculate. Then approximate

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Constant and Linear Approximations

To find a linear approximation of $f(x)$ at a particular point x : -pick a point a near to x, such that
$-f(a)$ and $f^{\prime}(a)$ are easy to calculate. Then approximate

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Example: Approx 1
Let $f(x)=\sqrt{x}$. Approximate $f(8.9)$.

Constant and Linear Approximations

To find a linear approximation of $f(x)$ at a particular point x : -pick a point a near to x, such that $-f(a)$ and $f^{\prime}(a)$ are easy to calculate. Then approximate

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Example: Approx 1
Let $f(x)=\sqrt{x}$. Approximate $f(8.9)$.
First we note that $8.9 \approx 9$ and we can easily calculate $f(9)=3$.

Constant and Linear Approximations

To find a linear approximation of $f(x)$ at a particular point x : -pick a point a near to x, such that $-f(a)$ and $f^{\prime}(a)$ are easy to calculate. Then approximate

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Example: Approx 1
Let $f(x)=\sqrt{x}$. Approximate $f(8.9)$.
First we note that $8.9 \approx 9$ and we can easily calculate $f(9)=3$.
Constant approximation:

$$
8.9 \approx 9 \quad \text { so } \quad f(8.9) \approx f(9)=3
$$

Constant and Linear Approximations

To find a linear approximation of $f(x)$ at a particular point x : -pick a point a near to x, such that $-f(a)$ and $f^{\prime}(a)$ are easy to calculate. Then approximate

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Example: Approx 1
Let $f(x)=\sqrt{x}$. Approximate $f(8.9)$.
First we note that $8.9 \approx 9$ and we can easily calculate $f(9)=3$.
Constant approximation:

$$
8.9 \approx 9 \quad \text { so } \quad f(8.9) \approx f(9)=3
$$

Linear approximation: Using $a=9, f^{\prime}(a)=\frac{1}{2 \sqrt{a}}=\frac{1}{2 \sqrt{9}}=\frac{1}{6}$.

$$
f(8.9) \approx f(9)+f^{\prime}(9)(8.9-9)=3+\frac{1}{6}(-.1)=3-\frac{1}{60}=2.98 \overline{33}
$$

Constant and Linear Approximations

To find a linear approximation of $f(x)$ at a particular point x : -pick a point a near to x, such that $-f(a)$ and $f^{\prime}(a)$ are easy to calculate. Then approximate

$$
f(x) \approx L(x)=f(a)+f^{\prime}(a)(x-a)
$$

Example: Approx 1
Let $f(x)=\sqrt{x}$. Approximate $f(8.9)$.
First we note that $8.9 \approx 9$ and we can easily calculate $f(9)=3$.
Constant approximation:

$$
8.9 \approx 9 \quad \text { so } \quad f(8.9) \approx f(9)=3
$$

Linear approximation: Using $a=9, f^{\prime}(a)=\frac{1}{2 \sqrt{a}}=\frac{1}{2 \sqrt{9}}=\frac{1}{6}$.

$$
f(8.9) \approx f(9)+f^{\prime}(9)(8.9-9)=3+\frac{1}{6}(-.1)=3-\frac{1}{60}=2.98 \overline{33}
$$

Google: $\sqrt{8.9}=2.98328677804 \ldots$

Characteristics of a Good Approximation

Characteristics of a Good Approximation

Accurate

Characteristics of a Good Approximation

Accurate

Possible to calculate (add, subtract, multiply, divide integers)

Can we Compute?

Suppose we want to approximate the value of $\cos (1.5)$. Which of the following linear approximations could we calculate by hand? (You can leave things in terms of π.)
A. tangent line to $f(x)=\cos x$ when $x=\pi / 2$
B. tangent line to $f(x)=\cos x$ when $x=3 / 2$
C. both
D. neither

Can we Compute?

Suppose we want to approximate the value of $\cos (1.5)$. Which of the following linear approximations could we calculate by hand? (You can leave things in terms of π.)
A. tangent line to $f(x)=\cos x$ when $x=\pi / 2$
B. tangent line to $f(x)=\cos x$ when $x=3 / 2$
C. both
D. neither

We know $\cos (\pi / 2=0)$ and $\sin (\pi / 2)=1$, so we can easily compute the linear approximation if we centre it at $\pi / 2$. However, what kind of ugly number is $\cos (3 / 2)$?

Can we Compute?

Suppose we want to approximate the value of $\cos (1.5)$. Which of the following linear approximations could we calculate by hand? (You can leave things in terms of π.)
A. tangent line to $f(x)=\cos x$ when $x=\pi / 2$
B. tangent line to $f(x)=\cos x$ when $x=3 / 2$
C. both
D. neither

We know $\cos (\pi / 2=0)$ and $\sin (\pi / 2)=1$, so we can easily compute the linear approximation if we centre it at $\pi / 2$. However, what kind of ugly number is $\cos (3 / 2)$?

Which of the following tangent lines is probably the most accurate in approximating $\cos (1.5)$?
A. tangent line to $f(x)=\cos x$ when $x=\pi / 2$
B. tangent line to $f(x)=\cos x$ when $x=\pi / 4$
C. constant approximation: $\cos 1.5 \approx \cos \pi / 2=0$
D. the linear approximations should be better than the constant approximation, but both linear approximations should have the same accuracy

Can we Compute?

Suppose we want to approximate the value of $\cos (1.5)$. Which of the following linear approximations could we calculate by hand? (You can leave things in terms of π.)
A. tangent line to $f(x)=\cos x$ when $x=\pi / 2$
B. tangent line to $f(x)=\cos x$ when $x=3 / 2$
C. both
D. neither

We know $\cos (\pi / 2=0)$ and $\sin (\pi / 2)=1$, so we can easily compute the linear approximation if we centre it at $\pi / 2$. However, what kind of ugly number is $\cos (3 / 2)$?

Which of the following tangent lines is probably the most accurate in approximating $\cos (1.5) ?$
A. tangent line to $f(x)=\cos x$ when $x=\pi / 2$
B. tangent line to $f(x)=\cos x$ when $x=\pi / 4$
C. constant approximation: $\cos 1.5 \approx \cos \pi / 2=0$
D. the linear approximations should be better than the constant approximation, but both linear approximations should have the same accuracy
$\pi / 2$ is very close to 1.5 .

Linear Approximation

Example: Approx 2
Approximate $\sin (3)$ using a linear approximation. It is OK to use π in your answer.

Linear Approximation

Example: Approx 2
Approximate $\sin (3)$ using a linear approximation. It is OK to use π in your answer. Let $f(x)=\sin x$ and $a=\pi$.

Linear Approximation

Example: Approx 2

Approximate $\sin (3)$ using a linear approximation. It is OK to use π in your answer. Let $f(x)=\sin x$ and $a=\pi$.
$f(3) \approx f(\pi)+f^{\prime}(\pi)(3-\pi)=\sin (\pi)+\cos (\pi)(3-\pi)=\pi-3 \approx 0.14159$

Linear Approximation

Example: Approx 2

Approximate $\sin (3)$ using a linear approximation. It is OK to use π in your answer. Let $f(x)=\sin x$ and $a=\pi$.
$f(3) \approx f(\pi)+f^{\prime}(\pi)(3-\pi)=\sin (\pi)+\cos (\pi)(3-\pi)=\pi-3 \approx 0.14159$

Google: $\sin (3)=0.14112000806 \ldots$

Linear Approximation

Example: Approx 3
Approximate $e^{1 / 10}$ using a linear approximation.

Linear Approximation

Example: Approx 3
Approximate $e^{1 / 10}$ using a linear approximation.

If $f(x)=e^{x}$:

Linear Approximation

Example: Approx 3

Approximate $e^{1 / 10}$ using a linear approximation.

If $f(x)=e^{x}$: $f^{\prime}(x)=e^{x}$ and $a=0$.
$f(1 / 10) \approx f(0)+f^{\prime}(0)(1 / 10-0)=e^{0}+e^{0}(1 / 10-0)=1+1 / 10=1.1$

Linear Approximation

Example: Approx 3
Approximate $e^{1 / 10}$ using a linear approximation.

If $f(x)=e^{x}$: $f^{\prime}(x)=e^{x}$ and $a=0$.
$f(1 / 10) \approx f(0)+f^{\prime}(0)(1 / 10-0)=e^{0}+e^{0}(1 / 10-0)=1+1 / 10=1.1$

Google: $e^{1 / 10}=1.10517091808 \ldots$

Linear Approximation

Example: Approx 3

Approximate $e^{1 / 10}$ using a linear approximation.

If $f(x)=e^{x}$:
$f^{\prime}(x)=e^{x}$ and $a=0$.
$f(1 / 10) \approx f(0)+f^{\prime}(0)(1 / 10-0)=e^{0}+e^{0}(1 / 10-0)=1+1 / 10=1.1$

If $g(x)=x^{1 / 10}:$

Google: $e^{1 / 10}=1.10517091808 \ldots$

Linear Approximation

```
Example: Approx }
```

Approximate $e^{1 / 10}$ using a linear approximation.

If $f(x)=e^{x}$:
$f^{\prime}(x)=e^{x}$ and $a=0$.
$f(1 / 10) \approx f(0)+f^{\prime}(0)(1 / 10-0)=e^{0}+e^{0}(1 / 10-0)=1+1 / 10=1.1$

If $g(x)=x^{1 / 10}$:
$g^{\prime}(x)=\frac{1}{10} x^{-9 / 10}$.
The closest number to e for which we can evaluate the tenth root is $a=1$. $g(e) \approx g(1)+g^{\prime}(1)(e-1)=1+\frac{1}{10}(-e-1)=\frac{e+9}{10} \ldots$ but what's e ?

Google: $e^{1 / 10}=1.10517091808 \ldots$

Linear Approximation

Let $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)$ is the linear approximation (linearization) of $f(x)$ at a.

Linear Approximation

Let $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)$ is the linear approximation (linearization) of $f(x)$ at a.

What is $L(a)$?

Linear Approximation

Let $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)$ is the linear approximation (linearization) of $f(x)$ at a.

What is $L(a)$?
What is $L^{\prime}(a)$?

Linear Approximation

Let $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)$ is the linear approximation (linearization) of $f(x)$ at a.

What is $L(a)$?
What is $L^{\prime}(a)$?
What is $L^{\prime \prime}(a)$? (Recall $L^{\prime \prime}(a)$ is the derivative of $L^{\prime}(a)$.)

Linear Approximation

Let $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)$ is the linear approximation (linearization) of $f(x)$ at a.

What is $L(a)$?

$$
L(a)=f(a)
$$

What is $L^{\prime}(a)$?
What is $L^{\prime \prime}(a)$? (Recall $L^{\prime \prime}(a)$ is the derivative of $L^{\prime}(a)$.)

Linear Approximation

Let $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)$ is the linear approximation (linearization) of $f(x)$ at a.

What is $L(a)$?

$$
L(a)=f(a)
$$

What is $L^{\prime}(a)$?

$$
L^{\prime}(a)=f^{\prime}(a)
$$

What is $L^{\prime \prime}(a)$? (Recall $L^{\prime \prime}(a)$ is the derivative of $L^{\prime}(a)$.)

Linear Approximation

Let $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)$ is the linear approximation (linearization) of $f(x)$ at a.

What is $L(a)$?

$$
L(a)=f(a)
$$

What is $L^{\prime}(a)$?

$$
L^{\prime}(a)=f^{\prime}(a)
$$

What is $L^{\prime \prime}(a)$? (Recall $L^{\prime \prime}(a)$ is the derivative of $L^{\prime}(a)$.)

Linear Approximation

Let $L(x)=f(a)+f^{\prime}(a)(x-a)$, so $L(x)$ is the linear approximation (linearization) of $f(x)$ at a.

What is $L(a)$?

$$
L(a)=f(a)
$$

What is $L^{\prime}(a)$?

$$
L^{\prime}(a)=f^{\prime}(a)
$$

What is $L^{\prime \prime}(a)$? (Recall $L^{\prime \prime}(a)$ is the derivative of $L^{\prime}(a)$.)

Recall: $L(x)$ is a line

Quadratic Approximation

Imagine we approximate $f(x)$ at a with a parabola $P(x)$.

Quadratic Approximation

Imagine we approximate $f(x)$ at a with a parabola $P(x)$.

Then we can ensure:

$$
\begin{aligned}
P(a) & =f(a) \\
P^{\prime}(a) & =f^{\prime}(a), \text { and } \\
P^{\prime \prime}(a) & =f^{\prime \prime}(a) .
\end{aligned}
$$

Quadratic Approximation

Imagine we approximate $f(x)$ at a with a parabola $P(x)$.

$P(x)=A+B x+C x^{2}$	$P(a)=A+B a+C a^{2}$		$f(a)$	
$P^{\prime}(x)=$	$B+2 C x$	$P^{\prime}(a)=$	$B+2 C a$	$f^{\prime}(a)$
$P^{\prime \prime}(x)=$	$2 C$	$P^{\prime \prime}(a)=$	$2 C$	$f^{\prime \prime}(a)$

Quadratic Approximation

Imagine we approximate $f(x)$ at a with a parabola $P(x)$.

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Quadratic Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Quadratic Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

$$
P(a)=f(a)+0+0=f(a)
$$

Quadratic Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

$$
P(a)=f(a)+0+0=f(a)
$$

$$
P^{\prime}(x)=f^{\prime}(a)+2 \frac{1}{2} f^{\prime \prime}(a)(x-a)=f^{\prime}(a)+f^{\prime \prime}(a)(x-a)
$$

Quadratic Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

$$
P(a)=f(a)+0+0=f(a)
$$

$$
\begin{aligned}
& P^{\prime}(x)=f^{\prime}(a)+2 \frac{1}{2} f^{\prime \prime}(a)(x-a)=f^{\prime}(a)+f^{\prime \prime}(a)(x-a) \\
& P^{\prime}(a)=f^{\prime}(a)+0=f^{\prime}(a)
\end{aligned}
$$

Quadratic Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

$$
P(a)=f(a)+0+0=f(a)
$$

$$
\begin{aligned}
& P^{\prime}(x)=f^{\prime}(a)+2 \frac{1}{2} f^{\prime \prime}(a)(x-a)=f^{\prime}(a)+f^{\prime \prime}(a)(x-a) \\
& P^{\prime}(a)=f^{\prime}(a)+0=f^{\prime}(a)
\end{aligned}
$$

$$
\begin{aligned}
& P^{\prime \prime}(x)=f^{\prime \prime}(a) \\
& P^{\prime \prime}(a)=f^{\prime \prime}(a)
\end{aligned}
$$

Quadratic Approximation

Constant:

$$
f(x) \approx f(a)
$$

Linear:

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

Quadratic:

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Quadratic Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Example: Approx 4

Approximate $\ln (1.1)$ using a quadratic approximation.

Quadratic Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Example: Approx 4

Approximate $\ln (1.1)$ using a quadratic approximation.

We use $f(x)=\ln x$ and $a=1$. Then $f^{\prime}(x)=x^{-1}$ and $f^{\prime \prime}(x)=-x^{-2}$, so $f(a)=0$, $f^{\prime}(a)=1$, and $f^{\prime \prime}(a)=-1$. Now:

$$
\begin{aligned}
f(1.1) & \approx f(a)+f^{\prime}(a)(1.1-a)+\frac{1}{2} f^{\prime \prime}(a)(1.1-a)^{2} \\
& =0+1(1.1-1)+\frac{1}{2}(-1)(1.1-1)^{2} \\
& =0.1-\frac{1}{200}=\frac{20}{200}-\frac{1}{200}=\frac{19}{200}=\frac{9.5}{100}=0.095
\end{aligned}
$$

Google: $\ln (1.1)=0.0953101798 \ldots$

Quadratic Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Example: Approx 5

Approximate $\sqrt[3]{28}$ using a quadratic approximation. You may leave your answer unsimplified, as long as it is an expression you could figure out using only plus, minus, times, and divide.

Quadratic Approximation

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Example: Approx 5

Approximate $\sqrt[3]{28}$ using a quadratic approximation. You may leave your answer unsimplified, as long as it is an expression you could figure out using only plus, minus, times, and divide.
We use $f(x)=x^{1 / 3}$ and $a=27$. Then $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$ and $f^{\prime \prime}(x)=\frac{-2}{9} x^{-5 / 3}$. So, $f(a)=3, f^{\prime}(a)=\frac{1}{3^{3}}$, and $f^{\prime \prime}(a)=\frac{-2}{3^{T}}$.

$$
\begin{aligned}
f(28) & \approx f(27)+f^{\prime}(27)(28-27)+\frac{1}{2} f^{\prime \prime}(27)(28-27)^{2} \\
& =3+\frac{1}{3^{3}}(1)+\frac{-1}{3^{7}}\left(1^{2}\right) \\
& =3+\frac{1}{3^{3}}-\frac{1}{3^{7}} \\
& =3.03657978967 \ldots
\end{aligned}
$$

$$
\text { Google : } \sqrt[3]{28}=3.03658897188 \ldots
$$

Example: Approx 6
Determine what $f(x)$ and a should be so that you can approximate the following using a quadratic approximation.
$\ln (.9)$
$e^{-1 / 30}$
$\sqrt[5]{30}$
$(2.01)^{6}$

Determine what $f(x)$ and a should be so that you can approximate the following using a quadratic approximation.
$\ln (.9)$
$f(x)=\ln (x), a=1$
$e^{-1 / 30}$
$f(x)=e^{x}, a=0$
$\sqrt[5]{30}$
$f(x)=\sqrt[5]{x}, a=32=2^{5}$
$(2.01)^{6}$
$f(x)=x^{6}, a=2$. It is possible to compute this without an approximation, but an approximation in this case might save time, while being sufficiently accurate for your purposes.

Sum Notation

$$
\sum_{n=17}^{20} g(n)=g(17)+g(18)+g(19)+g(20)
$$

We let n take every integer value from 17 to 20 (including 17 and 20), and sum the values of $g(n)$.

Sum Notation

$$
\sum_{n=17}^{20} g(n)=g(17)+g(18)+g(19)+g(20)
$$

We let n take every integer value from 17 to 20 (including 17 and 20), and sum the values of $g(n)$.
Example: $\sum_{n=-5}^{-2}\left(5 n^{2}+n\right)=$

Sum Notation

$$
\sum_{n=17}^{20} g(n)=g(17)+g(18)+g(19)+g(20)
$$

We let n take every integer value from 17 to 20 (including 17 and 20), and sum the values of $g(n)$.
Example: $\sum_{n=-5}^{-2}\left(5 n^{2}+n\right)=$
$\overbrace{5(-5)^{2}+(-5)}^{n=-5}+\overbrace{5(-4)^{2}+(-4)}^{n=-4}+\overbrace{5(-3)^{2}+(-3)}^{n=-3}+\overbrace{5(-2)^{2}+(-2)}^{n=-2}$

Sum Notation

$$
\sum_{n=17}^{20} g(n)=g(17)+g(18)+g(19)+g(20)
$$

We let n take every integer value from 17 to 20 (including 17 and 20), and sum the values of $g(n)$.
Example: $\sum_{n=-5}^{-2}\left(5 n^{2}+n\right)=$
$\overbrace{5(-5)^{2}+(-5)}^{n=-5}+\overbrace{5(-4)^{2}+(-4)}^{n=-4}+\overbrace{5(-3)^{2}+(-3)}^{n=-3}+\overbrace{5(-2)^{2}+(-2)}^{n=-2}$
Example: simplify $\sum_{n=-1}^{3}(a n+5)=$

Sum Notation

$$
\sum_{n=17}^{20} g(n)=g(17)+g(18)+g(19)+g(20)
$$

We let n take every integer value from 17 to 20 (including 17 and 20), and sum the values of $g(n)$.
Example: $\sum_{n=-5}^{-2}\left(5 n^{2}+n\right)=$
$\overbrace{5(-5)^{2}+(-5)}^{n=-5}+\overbrace{5(-4)^{2}+(-4)}^{n=-4}+\overbrace{5(-3)^{2}+(-3)}^{n=-3}+\overbrace{5(-2)^{2}+(-2)}^{n=-2}$
Example: simplify $\sum_{n=-1}^{3}(a n+5)=$
$=\overbrace{a(-1)+5}^{n=-1}+\overbrace{a(0)+5}^{n=0}+\overbrace{a(1)+5}^{n=1}+\overbrace{a(2)+5}^{n=2}+\overbrace{a(3)+5}^{n=3}$
$5(5)+(-a)+0+a+2 a+3 a=25+5 a$

Example: simplify $\sum_{k=-5}^{5}(7 k)=$

Example: simplify $\sum_{k=-5}^{5}(7 k)=$
The answer is zero!
$\overbrace{7(-5)}^{n=-5}+\overbrace{7(-4)}^{n=-4}+\cdots \overbrace{7(4)}^{n=4}+\overbrace{7(5)}^{n=5}$

Example: simplify $\sum_{k=-5}^{5}(7 k)=$
The answer is zero!

$n=-5$		$n=-4$			$n=4$		$n=5$
$\overbrace{(-5)}$		$\overbrace{}^{-}$			$\overbrace{7}$		$\overbrace{7(5)}$
$7(-5)$	$+$	$7(-4)$	$+$	$+$	7(4)	$+$	7(5)
$7(-5)$	+	$7(-4)$	+	+	$7(4)$	+	$7(5)$

Example: simplify $\sum_{k=-5}^{5}(7 k)=$
The answer is zero!

$n=-5$		$n=-4$				$n=4$		$n=5$
$\overbrace{}^{-5}$		$\overbrace{-}$				-)
$7(-5)$	$+$	$7(-4)$	$+$.	$+$	$7(4)$	$+$	7(5)
$7(-5)$	$+$	$7(-4)$	+	.	$+$	7(4)	$+$	$7(5)$
$7(-5)$	+	$7(-4)$	+	.	+	$7(4)$	+	$7(5)$

Example: simplify $\sum_{k=-5}^{5}(7 k)=$
The answer is zero!

$n=-5$		$n=-4$				$n=4$		$n=5$
$\overbrace{}^{-5}$		$\overbrace{-}$				-)
$7(-5)$	$+$	$7(-4)$	$+$.	$+$	$7(4)$	$+$	7(5)
$7(-5)$	$+$	$7(-4)$	+	.	$+$	7(4)	$+$	$7(5)$
$7(-5)$	+	$7(-4)$	+	.	+	$7(4)$	+	$7(5)$

Coming Soon

Coming Soon

Coming Soon

