MATH 215/255

Lecture 11
Solutions to the homogeneous \(Ly = 0 \)

Subspace property: The set of solutions to \(Ly = 0 \) forms a subspace (the nullspace of \(L = N(L) \)).

If \(Ly_1 = 0 \) and \(Ly_2 = 0 \) then
\[
L(c_1y_1 + c_2y_2) = c_1Ly_1 + c_2Ly_2 = c_1 \cdot 0 + c_2 \cdot 0 = 0
\]

Example: If \(Ly = y'' - \omega^2 y \) (\(\omega \neq 0 \)) then \(y_1 = e^{\omega x} \) and \(y_2 = e^{-\omega x} \) are solutions to \(Ly = 0 \). (i.e. in \(N(L) \))

Thus \(c_1 e^{\omega x} + c_2 e^{-\omega x} \) is a solution of \(Ly = 0 \) \(\forall c_1, c_2 \)

Are there any other solutions?

Goal: Show that \(N(L) \) is 2-dimensional, i.e. if \(y_1(x) \) and \(y_2(x) \) are two linearly independent solutions to \(Ly = 0 \) then any solution is a linear combination
\[
c_1y_1(x) + c_2y_2(x)
\]
Linear dependence/independence

Definition: Two functions $y_1(x), y_2(x)$ are linearly dependent if $c_1y_1(x) + c_2y_2(x) = 0 \neq x$ for some c_1, c_2, not both zero.

If $c_1y_1(x) + c_2y_2(x) = 0$ implies $c_1 = c_2 = 0$ then y_1, y_2 are linearly independent.

How we can test two functions for dependence/independence?
If y_1, y_2 are solutions to $Ly = 0$ then $y_1(x), y_2(x)$ are linearly dependent (independent) as functions.

For some x_0 the vectors $\begin{bmatrix} y_1(x_0) \\ y'_1(x_0) \end{bmatrix}$ and $\begin{bmatrix} y_2(x_0) \\ y'_2(x_0) \end{bmatrix}$ are dependent (independent).

Proof: y_1, y_2 dependent $\Rightarrow c_1 y_1(x) + c_2 y_2(x) = 0, \forall x \text{ with } c_1, c_2 \text{ not both zero}$

$\Rightarrow c_1 y'_1 + c_2 y'_2 = 0, \forall x \Rightarrow c_1 \begin{bmatrix} y_1(x) \\ y'_1(x) \end{bmatrix} + c_2 \begin{bmatrix} y_2(x) \\ y'_2(x) \end{bmatrix} = 0, \forall x$

$\Rightarrow \begin{bmatrix} y_1(x_0) \\ y'_1(x_0) \end{bmatrix}$ and $\begin{bmatrix} y_2(x_0) \\ y'_2(x_0) \end{bmatrix}$ dependent for any x_0

\Rightarrow dependent for some x_0

Conversely: if $c_1 \begin{bmatrix} y_1(x_0) \\ y'_1(x_0) \end{bmatrix} + c_2 \begin{bmatrix} y_2(x_0) \\ y'_2(x_0) \end{bmatrix} = 0$ for $c_1, c_2 \text{ not both zero}$ then $y(x) = c_1 y_1(x) + c_2 y_2(x)$ satisfies the initial condition $y(x_0) = 0, y'(x_0) = 0$.
But the solution \(\ddot{y}(x) = 0 \) satisfies the same initial condition.

Thus by the uniqueness theorem \(y = \ddot{y} = 0 \)
i.e. \(c_1 y_1(x) + c_2 y_2(x) = 0 \)
Wronskian determinant

Definition: The wronskian of two solutions y_1, y_2 of $Ly = 0$ is defined as:

$$W(y_1, y_2)(x) = \det \begin{bmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{bmatrix} = y_1 y_2' - y_2 y_1'$$

From above, we can see that:

$$W(y_1, y_2)(x_0) \neq 0 \implies y_1, y_2 \text{ are linearly independent.}$$

Notice: $W(y_1, y_2)(x_0)$ is either:

- zero for every x_0 (if y_1, y_2 are dependent)
- zero for no x_0 (if y_1, y_2 are independent)

Example: $W(e^x, e^{-w}e^x) = \det \begin{bmatrix} e^x & e^{-w}e^x \\ we^x & -we^x \end{bmatrix} = -we^x e^{-w} - we^x = -2we^x$
Formula for the Wronskian:

If \(L y_1 = L y_2 = 0 \), \(W(x) = y_1 y_2' - y_2 y_1' \), then

\[
W(x) = y_1 y_2' + y_1' y_2 - y_2 y_1' - y_1 y_2''
= y_1 (-p(x) y_2' - q(x) y_2) - y_2 (-p(x) y_1' - q(x) y_1)
= -p(x) (y_1 y_2' - y_2 y_1') = -p(x) W(x)
\]

\[-\int p(x) dx\]

\(\Rightarrow W(x) = C e \)

This is either zero for all \(x \) (if \(C = 0 \)) or never zero (if \(C \neq 0 \)).

Main result on solutions to \(Ly = 0 \):

If \(y_1, y_2 \) are two linearly independent solutions to \(Ly = 0 \), then any solution \(y \) is a linear combination \(y = C_1 y_1 + C_2 y_2 \).
Proof: Pick any x_0.

We know \[
\begin{bmatrix}
y_1(x_0) \\
y_1'(x_0)
\end{bmatrix}
\text{ and }
\begin{bmatrix}
y_2(x_0) \\
y_2'(x_0)
\end{bmatrix}
\]
are 2 linearly independent vectors in \mathbb{R}^2.

Thus \[
\begin{bmatrix}
y(x_0) \\
y'(x_0)
\end{bmatrix} = c_1 \begin{bmatrix}
y_1(x_0) \\
y_1'(x_0)
\end{bmatrix} + c_2 \begin{bmatrix}
y_2(x_0) \\
y_2'(x_0)
\end{bmatrix}
\]
for some c_1, c_2.

This implies $y(x)$ and $c_1 y_1(x) + c_2 y_2(x)$ satisfy the same initial condition at x_0.

By uniqueness, they must be equal.

How to find 2 independent solutions?
(Next Lecture)