Last Lecture:

—> Separable equations: \(y' = g(x)h(y) \)
—> Slope fields

Today:

—> First order linear equation
First order linear equations are equation in the form:

\[y'(x) + p(x)y(x) = f(x) \]

where \(p(x), f(x) \) are known functions.
First order linear equation

First order linear equations are equation in the form:

\[y'(x) + p(x)y(x) = f(x) \]

where \(p(x), f(x) \) are known functions.

- Important for applications
First order linear equation

First order linear equations are equation in the form:

$$ y'(x) + p(x)y(x) = f(x) $$

where $p(x), f(x)$ are known functions.

- Important for applications
- Solutions can be written as integrals. They exists for all x provided the integrals exists (e.g. if $p(x)$ and $f(x)$ are continues)
First order linear equation

First order linear equations are equation in the form:

\[y'(x) + p(x)y(x) = f(x) \]

where \(p(x), f(x) \) are known functions.

- Important for applications
- Solutions can be written as integrals. They exists for all \(x \) provided the integrals exists (e.g. if \(p(x) \) and \(f(x) \) are continues)

Integrating factors and solution formula
First order linear equation

First order linear equations are equation in the form:

\[y'(x) + p(x)y(x) = f(x) \]

where \(p(x), f(x) \) are known functions.

- Important for applications
- Solutions can be written as integrals. They exists for all \(x \) provided the integrals exists (e.g. if \(p(x) \) and \(f(x) \) are continues)

Integrating factors and solution formula

Let \(P(x) = \int p(x) dx \) be any antiderivative of \(p(x) \). We can write the left hand side of the equation as:

\[e^{-P} \frac{d}{dx} e^{P} y \]
First order linear equation

First order linear equations are equations in the form:

\[y'(x) + p(x)y(x) = f(x) \]

where \(p(x), f(x) \) are known functions.

- Important for applications
- Solutions can be written as integrals. They exist for all \(x \) provided the integrals exist (e.g. if \(p(x) \) and \(f(x) \) are continuous)

Integrating factors and solution formula

Let \(P(x) = \int p(x) \, dx \) be any antiderivative of \(p(x) \). We can write the left hand side of the equation as:

\[
e^{-P} \frac{d}{dx} e^P y = e^{-P} (e^P P' y + e^P y')
\]
First order linear equation

First order linear equations are equations in the form:

\[y'(x) + p(x)y(x) = f(x) \]

where \(p(x), f(x) \) are known functions.

- Important for applications
- Solutions can be written as integrals. They exist for all \(x \) provided the integrals exist (e.g. if \(p(x) \) and \(f(x) \) are continuous)

Integrating factors and solution formula

Let \(P(x) = \int p(x) \, dx \) be any antiderivative of \(p(x) \). We can write the left hand side of the equation as:

\[
e^{-P} \frac{d}{dx} e^P y = e^{-P} (e^P P' y + e^P y') = P' y + y' = p y + y'
\]
Thus the equation becomes:

\[e^{-P} \frac{d}{dx} e^P y = f \]
Thus the equation becomes:

\[e^{-P} \frac{d}{dx} e^{P} y = f \]

\[\frac{d}{dx} e^{P} y = e^{P} f \]
Thus the equation becomes:

\[e^{-P} \frac{d}{dx} e^P y = f \]

\[\frac{d}{dx} e^P y = e^P f \]

\[e^{P(x)} y(x) = \int e^{P(s)} f(s) ds + C \]
Thus the equation becomes:

\[e^{-P} \frac{d}{dx} e^P y = f \]

\[\frac{d}{dx} e^P y = e^P f \]

\[e^{P(x)} y(x) = \int e^{P(s)} f(s) ds + C \]

\[y(x) = e^{-P(x)} \int e^{P(s)} f(s) ds + Ce^{-P(x)} \]

This is the general solution.
Thus the equation becomes:

\[
e^{-P} \frac{d}{dx} e^P y = f
\]

\[
\frac{d}{dx} e^P y = e^P f
\]

\[
e^{P(x)} y(x) = \int e^{P(s)} f(s) ds + C
\]

\[
y(x) = e^{-P(x)} \int e^{P(s)} f(s) ds + C e^{-P(x)}
\]

This is the general solution.

Note: Let's choose \(P(x) = \int_{x_0}^{x} p(s) ds \) and do the integral from \(x_0 \) to \(x \) then \(C = y(x_0) \) so the solution satisfying the initial condition.
Thus the equation becomes:

\[e^{-P} \frac{d}{dx} e^P y = f \]

\[\frac{d}{dx} e^P y = e^P f \]

\[e^{P(x)} y(x) = \int e^{P(s)} f(s)ds + C \]

This is the general solution.

Note: Let's choose \(P(x) = \int_{x_0}^{x} p(s)ds \) and do the integral from \(x_0 \) to \(x \) then \(C = y(x_0) \) so the solution satisfying the initial condition.

\[y(x) = e^{-P(x)} \int e^{P(s)} f(s)ds + C e^{-P(x)} \]

\[y(x) = e^{-\int_{x_0}^{x} p(s)ds} \int_{x_0}^{x} e^{\int_{x_0}^{s} p(t)dt} f(s)ds + y_0 e^{-\int_{x_0}^{x} p(s)ds} \]
Note: The function $r(x) = e^{P(x)}$ is called an integrating factor
Note: The function $r(x) = e^{P(x)}$ is called an integrating factor

$$r(y' + py) = \frac{d}{dx} ry$$

e.i. multiplying the left hand side by r turns it into a derivative.
Example: Solve $xy' + y = e^x$, $y(1) = 1$
Example: Solve $xy' + y = e^x, \quad y(1) = 1$

Solution: Put in standard form...
Example: Solve $xy' + y = e^x$, $y(1) = 1$

Solution: Put in standard form... $y' + \frac{1}{x}y = \frac{e^x}{x}$
Example: Solve \(xy' + y = e^x \), \(y(1) = 1 \)

Solution: Put in standard form…

\[y' + \frac{1}{x}y = \frac{e^x}{x} \]

Then

\[P(x) = \int_1^x \frac{1}{s} \, ds = \ln(x) \]

so

\[e^{P(x)} = e^{\ln(x)} = x \]
Example: Solve \(xy' + y = e^x \), \(y(1) = 1 \)

Solution: Put in standard form... \(y' + \frac{1}{x}y = \frac{e^x}{x} \)

Then \(P(x) = \int_1^x \frac{1}{s} ds = \ln(x) \) so \(e^{P(x)} = e^{\ln(x)} = x \)

\[
y(x) = e^{-\int_{x_0}^x p(s) ds} \int_{x_0}^x e^{\int_{s_0}^s p(t) dt} f(s) ds + y_0 e^{-\int_{s_0}^{x_0} p(s) ds}
\]
Example: Solve \(xy' + y = e^x \), \(y(1) = 1 \)

Solution: Put in standard form… \(y' + \frac{1}{x}y = \frac{e^x}{x} \)

Then \(P(x) = \int_1^x \frac{1}{s} ds = \ln(x) \) so \(e^{P(x)} = e^{\ln(x)} = x \)

\[
\begin{align*}
y(x) &= e^{-\int_{x_0}^{x} p(s) ds} \int_{x_0}^{x} e^{\int_{s}^{x} p(t) dt} f(s) ds + y_0 e^{-\int_{x_0}^{x} p(s) ds} \\
y(x) &= e^{-\int_{1}^{x} \frac{1}{s} ds} \int_{1}^{x} e^{\int_{s}^{x} \frac{1}{t} dt} f(s) ds + y_0 e^{-\int_{1}^{x} \frac{1}{s} ds} \\
y(x) &= \frac{1}{x} \int_{1}^{x} e^s \frac{1}{s} ds + \frac{1}{x} = \frac{1}{x} [e^x - e] + \frac{1}{x} = \frac{1}{x} [e^x - e + 1]
\end{align*}
\]
Example: Solve \(xy' + y = e^x, \ y(1) = 1 \)

Solution: Put in standard form… \(y' + \frac{1}{x}y = \frac{e^x}{x} \)

Then \(P(x) = \int_1^x \frac{1}{s} ds = \ln(x) \) so \(e^{P(x)} = e^{\ln(x)} = x \)

\[
y(x) = e^{x_0} \int_{x_0}^x f(s) ds + y_0 e^{x_0} - \int_{x_0}^x p(s) ds
\]

\[
y(x) = \frac{1}{x} \int_1^x s e^s ds + \frac{1}{x} = \frac{1}{x} [e^x - e] + \frac{1}{x} = \frac{1}{x} [e^x - e + 1]
\]

Check: \(y' = -x^{-2} [e^x - e + 1] + \frac{1}{x} e^x \)
Example: Solve \(xy' + y = e^x, \quad y(1) = 1 \)

Solution: Put in standard form... \(y' + \frac{1}{x}y = \frac{e^x}{x} \)

Then \(P(x) = \int_1^x \frac{1}{s} ds = \ln(x) \) so \(e^{P(x)} = e^{\ln(x)} = x \)

\[
y(x) = e^{-\int_{x_0}^x p(s)ds} \int_{x_0}^x e^{\int_{t_0}^t f(s)ds} + y_0 e^{-\int p(s)ds} \]

\[
y(x) = \frac{1}{x} \int_1^x s \frac{e^s}{s} ds + \frac{1}{x} = \frac{1}{x} \left[e^x - e \right] + \frac{1}{x} = \frac{1}{x} \left[e^x - e + 1 \right]
\]

Check: \(y' = -x^{-2}[e^x - e + 1] + \frac{1}{x}e^x \)

\[
xy' = -\frac{1}{x}[e^x - e + 1] + e^x = -y + e^x
\]
Example: Solve \(x y' + y = e^x, \ y(1) = 1 \)

Solution: Put in standard form... \(y' + \frac{1}{x} y = \frac{e^x}{x} \)

Then \(P(x) = \int_1^x \frac{1}{s} ds = ln(x) \) so \(e^{P(x)} = e^{ln(x)} = x \)

\[
y(x) = e^{-\int_{x_0}^x p(s) ds} \int_{x_0}^x e^{\int_{t_0}^t p(t) dt} f(s) ds + y_0 e^{-\int_{x_0}^x p(s) ds}
\]

\[
y(x) = \frac{1}{x} \int_1^x s e^s \frac{ds}{s} + \frac{1}{x} = \frac{1}{x} [e^x - e] + \frac{1}{x} = \frac{1}{x} [e^x - e + 1]
\]

Check: \(y' = -x^{-2} [e^x - e + 1] + \frac{1}{x} e^x \)

\[
x y' = -\frac{1}{x} [e^x - e + 1] + e^x = -y + e^x
\]

\[
y(1) = \frac{1}{1} [e^1 - e + 1] = 1
\]
Example: Solve $xy' + y = e^x$, $y(1) = 1$

Solution: Put in standard form... $y' + \frac{1}{x}y = \frac{e^x}{x}$

Then $P(x) = \int_1^x \frac{1}{s}ds = \ln(x)$ so $e^{P(x)} = e^{\ln(x)} = x$

$$\begin{align*}
y(x) &= e^{-\int_0^x p(s)ds} \left(\int_0^x e^{\int_0^x f(t)dt} f(s)ds + y_0 e^{-\int_0^x p(s)ds} \right) \\
y(x) &= \frac{1}{x} \int_1^x s e^{s} ds + \frac{1}{x} = \frac{1}{x} [e^x - e] + \frac{1}{x} = \frac{1}{x} [e^x - e + 1] \\
\end{align*}$$

Check: $y' = -x^{-2} [e^x - e + 1] + \frac{1}{x} e^x$

$$
\begin{align*}
xy' &= \frac{-1}{x} [e^x - e + 1] + e^x = -y + e^x \\
y(1) &= \frac{1}{1} [e^1 - e + 1] = 1
\end{align*}
$$

Notice that the solution exists for $x > 0$ i.e. up to the point where $p(x) = \frac{1}{x}$ and $f(x) = \frac{e^x}{x}$ stop being continues.
Example: Solve \(xy' + y = e^x, \quad y(1) = 1 \)

Solution: Put in standard form… \(y' + \frac{1}{x}y = \frac{e^x}{x} \)

Then \(P(x) = \int_1^x \frac{1}{s} ds = \ln(x) \) so \(e^{P(x)} = e^{\ln(x)} = x \)

\[
y(x) = e^{-\int_0^x p(s) ds} \int_0^x \left(\int_0^t p(t) dt \right) f(s) ds + y_0 e^{-\int_0^x p(s) ds}
\]

\[
y(x) = \frac{1}{x} \int_1^x \frac{e^s}{s} ds + \frac{1}{x} = \frac{1}{x} \left[e^x - e \right] + \frac{1}{x} = \frac{1}{x} \left[e^x - e + 1 \right]
\]

Check: \(y' = -x^{-2} \left[e^x - e + 1 \right] + \frac{1}{x} e^x \)

\[
xy' = -\frac{1}{x} \left[e^x - e + 1 \right] + e^x = -y + e^x
\]

\[
y(1) = \frac{1}{1} \left[e^1 - e + 1 \right] = 1
\]

Notice that the solution exists for \(x > 0 \) i.e. up to the point where \(p(x) = \frac{1}{x} \) and \(f(x) = \frac{e^x}{x} \) stop being continues.

Sometimes solutions exists even though \(p(x) \) or \(f(x) \) have a singularity.
Example: \(y' - \frac{1}{x} y = 0, \quad y(1) = 1 \)
Example: \[y' - \frac{1}{x}y = 0, \quad y(1) = 1 \]

Solution is only guaranteed to exist for \(x > 0 \) but in fact \(y(x) = x \) is the solution.
Example: \[y' - \frac{1}{x}y = 0, \quad y(1) = 1 \]

Solution is only guaranteed to exist for \(x > 0 \) but in fact \(y(x) = x \) is the solution.

Sometimes a solution extends past a singularity of \(p(x) \) or \(f(x) \) for some initial condition but not all.
Example: \[y' - \frac{1}{x}y = 0, \quad y(1) = 1 \]

Solution is only guaranteed to exists for \(x > 0 \) but in fact \(y(x) = x \) is the solution.

Sometimes a solution extends past a singularity of \(p(x) \) or \(f(x) \) for some initial condition but not all.

Example: \[y' - \frac{1}{x}y = 2, \quad y(1) = y_0, \quad P(x) = \ldots = x \]

\[y(x) = e^{-P(x)} = \int_1^x e^P(s)2ds + e^{-P(x)}y_0 = \frac{1}{x}2 \int_1^x sds + \frac{1}{x}y_0 \]
Example: \[
y' - \frac{1}{x}y = 0, \quad y(1) = 1
\]

Solution is only guaranteed to exists for \(x > 0\) but in fact \(y(x) = x\) is the solution.

Sometimes a solution extends past a singularity of \(p(x)\) or \(f(x)\) for some initial condition but not all.

Example: \[
y' - \frac{1}{x}y = 2, \quad y(1) = y_0, \quad P(x) = \ldots = x
\]

\[
y(x) = e^{-P(x)} = \int_1^x e^P(s)2\,ds + e^{-P(x)}y_0 = \frac{1}{x}2 \int_1^x s\,ds + \frac{1}{x}y_0
\]

\[
= \frac{2}{x}(\frac{x^2}{2} - \frac{1}{2}) + \frac{y_0}{x} = x + \frac{y_0 - 1}{x}
\]
Example: \[y' - \frac{1}{x}y = 0, \quad y(1) = 1 \]

Solution is only guaranteed to exists for \(x > 0 \) but in fact \(y(x) = x \) is the solution.

Sometimes a solution extends past a singularity of \(p(x) \) or \(f(x) \) for some initial condition but not all.

Example: \[y' - \frac{1}{x}y = 2, \quad y(1) = y_0, \quad P(x) = \ldots = x \]

\[
y(x) = e^{-P(x)} = \int_{1}^{x} e^P(s) 2ds + e^{-P(x)}y_0 = \frac{1}{x} 2 \int_{1}^{x} sds + \frac{1}{x}y_0
\]

\[
= \frac{2}{x} \left(\frac{x^2}{2} - \frac{1}{2} \right) + \frac{y_0}{x} = x + \frac{y_0 - 1}{x}
\]

Solution here: \(\longrightarrow \) exists for all \(x \) if \(y_0 = 1 \)

\(\longrightarrow \) blows up at \(x = 0 \) if \(y_0 \neq 1 \)
Mixing problem

Tank holds 120 liters of fresh water. Saltwater with concentration of \(\frac{g}{l} \) flows in at the rate of \(2l/min \). Well stirred mixture flows out at the rate of \(2l/min \). How much salt is in the tank at time \(t \)?
Mixing problem

Tank holds 120 liters of fresh water. Saltwater with concentration of $\gamma \frac{g}{l}$ flows in at the rate of $2l/min$. Well stirred mixture flows out at the rate of $2l/min$. How much salt is in the tank at time t?

Solution:

Let $x(t)$ be the amount of salt at time t (in grams), then:
Mixing problem

Tank holds 120 liters of fresh water. Saltwater with concentration of \(\frac{g}{l} \) flows in at the rate of \(2 l/min \). Well stirred mixture flows out at the rate of \(2 l/min \). How much salt is in the tank at time \(t \)?

Solution:

Let \(x(t) \) be the amount of salt at time \(t \) (in grams), then:

\[
x'(t) = \gamma \frac{g}{l} \times 2 \frac{l}{min} - \frac{x(t) \frac{g}{l} \times 2 \frac{l}{min}}{120}
\]
Mixing problem

Tank holds 120 liters of fresh water. Saltwater with consecration of $\gamma \frac{g}{l}$ flows in at the rate of $2l/min$. Well stirred mixture flows out at the rate of $2l/min$. How much salt is in the tank at time t?

Solution:

Let $x(t)$ be the amount of salt at time t (in grams), then:

$$x'(t) = \gamma \left[\frac{g}{l} \right] 2 \left[\frac{l}{min} \right] - \frac{x(t)}{120} \left[\frac{g}{l} \right] 2 \left[\frac{l}{min} \right]$$

which give us the D.E.:

$$x'(t) + \frac{2}{120} x = 2\gamma, \quad x(0) = 0$$
The solution is:

\[x(t) = e^{-\frac{1}{60}t} \int_0^t e^{\frac{1}{60}s} 2\gamma ds = 2\gamma e^{-\frac{1}{60}t} 60[e^{\frac{1}{60}t} - 1] = 120\gamma[1 - e^{-\frac{1}{60}t}] \]
The solution is:

\[x(t) = e^{-\frac{1}{60}t} \int_{0}^{t} e^{\frac{1}{60}s} 2\gamma ds = 2\gamma e^{-\frac{1}{60}t} 60[e^{\frac{1}{60}t} - 1] = 120\gamma[1 - e^{-\frac{1}{60}t}] \]

Notice: \(\lim_{t \to \infty} x(t) = 120\gamma \)
The solution is:

\[x(t) = e^{-\frac{1}{60}t} \int_0^t e^{\frac{1}{60}s} 2\gamma ds = 2\gamma e^{-\frac{1}{60}t} 60[e^{\frac{1}{60}t} - 1] \]

\[= 120\gamma[1 - e^{-\frac{1}{60}t}] \]

Notice: \[\lim_{t \to \infty} x(t) = 120\gamma \]

As an exercise try to solve the problem when the input consecration varies periodically:

\[\gamma(t) = \gamma_0 \sin(\omega t) \]