1. (a) Determine
\[\lim_{{x \to 0}} \frac{2x}{\tan(x)} \]
(b) What is the domain of \(f(x) = \sqrt{x^2 - 9} \)?
(c) Simplify \(\log_2(64) \).
(d) Let \(f(x) = 4x^2 \). Find \(f'(x) \) using the definition of the derivative.

2. Consider the equation
\[1 - x^2 = \frac{1}{x} \]
Show that this equation has a negative solution.

3. Find a point on the curve \(y = \sqrt{x} \) such that the tangent line to the curve at this point also passes through the point \((-1, 0)\). Illustrate your answer with a sketch.

4. Show that the following function is differentiable at \(x = 0 \):
\[f(x) = \begin{cases} \sin^2(2x) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases} \]

5. Let
\[f(x) = \begin{cases} c + \cos(x) & \text{if } x \leq 0 \\ xg(x) & \text{if } x > 0, \end{cases} \]
where \(c \) is a constant and \(g(x) \) is a continuous function on the interval \(x > 0 \) such that \(0 \leq g(x) \leq 1 \) for all \(x > 0 \). Find the value of \(c \) that makes \(f(x) \) continuous everywhere.