Last time

Consequence of the M.V.T. (assuming \(f' \) is continuous on some \([A,B]\) and \(f' \) is differentiable on \((A,B)\))

- If \(f'(x) > 0 \) for all \(A < x < B \) \(\Rightarrow \) \(f \) is increasing on \((A,B)\)
- If \(f'(x) < 0 \) for all \(A < x < B \) \(\Rightarrow \) \(f \) is decreasing on \((A,B)\)

Rule: if the inequality is replaced by \(\geq 0 \) or \(\leq 0 \)

the function is monotonous (increasing or decreasing)

but not strictly, e.g., \(f \) is increasing but not strictly increasing

Notice that in order for the derivative to change sign, it must • either pass through zero \(f'(a) = 0 \) or (jump) • have a singular point.

We indicate local maxima and minima.
(Quick example): Determine the monotonicity of \(f(x) = \frac{1}{3} x^3 - 4x \)

Since \(f \) is differentiable everywhere (being a polynomial),

\[
f'(x) = x^2 - 4 \quad f'(x) = 0 \iff x = \pm \sqrt{4} = \pm 2
\]

Make a table:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-\infty)</th>
<th>(-2)</th>
<th>(2)</th>
<th>(+\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x))</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(f(x))</td>
<td>↑</td>
<td>↘</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>

For \(x \in (-\infty, -2) \), to determine the sign of \(f'(x) \),

it suffices to plug in any number. Notice

\[
f'(x) = (x-2)(x+2)
\]

so any number smaller than \(-2\) makes both factors negative \(\implies f'(x) > 0 \).

\(x \in (2, +\infty) \): \(\ldots \implies f'(x) > 0 \)

\(x \in (-2, 2) \): one is positive, the other negative

\(\implies f'(x) \leq 0 \)

\(-2\)
"any": we know the derivative only become zero at
-2. If we want to find its sign on, say (-\infty,-2):
suffice to plug in any point, check its sign and
we know it would be the same sign on the whole
interval. Because IF NOT, there would be points

\[x_1, x_2 \in (-\infty, -2) \]

with \[f'(x_1) > 0 \text{ and } f'(x_2) < 0 \]
\(\text{if it were to change sign} \)

But \(f'(x) = \text{continuous} \) \(\Rightarrow \exists x_0 \in (x_1, x_2) \subset (-\infty, -2) \text{ or } (x_2, x_1) \)

s.t. \(f'(x_0) = 0 \) which is impossible since the
only roots of \(f'(x) = 0 \) are \(\pm 2 \) (and \(x_0 < -2 \))

we can plug in any point knowing that
the derivative won't change its sign before the
next critical or singular point.
Putting a +1 for \(f'(x) \) when \(f''(x) > 0 \) and a -1 for \(f'(x) \) when \(f''(x) < 0 \). We complete the table to determine:

\[
f(x) > 0 \text{ on } (-\infty, -2) \cup (2, \infty) \\
\]

and \(f(x) < 0 \text{ on } (-2, 2) \).

For more information about the shape of \(f(x) \), we can consider the second derivative, \(f''(x) \).

In particular, what the sign of \(f''(x) \) says:

1. \(f(x) = x^2 + 1 \) \(\rightarrow \) \(f'(x) = 2x \) \(\rightarrow \) \(f''(x) = 2 > 0 \)

Consider:

\[
0
\]

2. \(f(x) = -x^2 - 1 \) \(\rightarrow \) \(f'(x) = -2x \) \(\rightarrow \) \(f''(x) = -2 < 0 \)

\[
-4
\]
In the first case: $f''(x) > 0 \implies f'$ increasing

slopes of the tangent lines increase.

\[\text{slope is positive} \]
\[\text{slope on zero} \]
\[\text{slope is negative} \]

And similarly $f''(x) < 0 \implies$ slopes decrease.

Looking at the figure, we see that when the case

$f''(x) > 0$: the graph always lies above the tangent lines; in case like this we call $f(x)$ concave up (or convex).

$f''(x) < 0$: the graph lies below the tangent lines; we call it concave (or concave down).
If \(f''(c) = 0 \) for some \(a < c < b \) and the concavity changes across \(x = c \), then we call \(x = c \) an inflection point.

Ex: Determine the concavity of \(f(x) = x^3 + 3x \).

\[
f'(x) = 3x^2 + 3, \quad f''(x) = 6x
\]

For \(x \in (-\infty, 0) \): \(f''(x) < 0 \) → concave down

For \(x \in (0, \infty) \): \(f''(x) > 0 \) → concave up

\(x = 0 \): \(f''(0) = 0 \) and the concavity changes across

\(\text{Inflection Point} \)

\(-6-\)
Dealing with common misconceptions

1. It is possible for a concave down function to be positive.

\[a \quad b \]

concave up \(\rightarrow \) negative

2. The function may still be monotone of the same type after a change in concavity.

But function always increasing!
3. \(f''(x_0) = 0 \neq \quad x_0 = \text{inflection pt} \)

Eng: \(f''(x) = x^4 \rightarrow f'(x) = 3x^3 \rightarrow f''(x) = 9x^2 \)

\[x = 0 \rightarrow f''(0) = 0 \]

but \(f''(x) > 0 \) for \(x \in (-\infty, 0) \cup (0, +\infty) \)

concavity does not change at \(x = 0 \)

We are now in a position to start talking about how to sketch a graph of a function.

Let's summarize some tools and give an outline of the approach before we apply what we know.
Tools

1st derivative test: sign of $f'(x) \rightarrow$ monotonically

2nd: sign of $f''(x) \rightarrow$ Concavity

Useful Theorem: (Tests for minima and maxima)

Let $x_0 \in (a,b)$ be \begin{itemize}
 \item[a] a critical point of f
 \item[b] a singular number
\end{itemize}

and suppose f is \begin{itemize}
 \item[a] continuous at x_0
 \item[b] differentiable near it
\end{itemize}

1. Either of the following is sufficient to show that f has a local minimum at x_0

 \begin{itemize}
 \item[(a)] $f''(x_0) > 0$
 \item[(b)] $f'(x)$ negative to the left, positive to the right
 \end{itemize}

2. Either of the following is sufficient to show that f has a local maximum at x_0

 \begin{itemize}
 \item[(a)] $f''(x_0) < 0$
 \item[(b)] $f'(x)$ positive to the left, negative to its right
 \end{itemize}
Curve sketching protocol:

0th derivative stuff:
- domain and range
- domain of continuity
- x and y intercepts
- horizontal: \(\lim_{x \to \pm \infty} f(x) = L \) asymptote
 \[y = L \]
 \(\uparrow \) check both!
- vertical: \(\lim_{x \to a^{\pm}} f(x) = \pm \infty \) asymptote
 \[x = a \]
 \(\uparrow \) check both!

1st derivative stuff:
- using \(f'(x) \) determine
 - intervals where \(f'(x) > 0, f'(x) < 0 \)
 - critical and singular number

2nd derivative stuff:
- using \(f''(x) \) determine
 - intervals where \(f''(x) > 0, f''(x) < 0 \)
 (and concavity)
 - point where \(f''(x) = 0 \) and inflection points