MacLaurin for \(\sin x \):

We could do the same: \(u \to f(u)(x) \to f(u)(a) \to cu \)

but it's much faster to notice

\[
\sin x = \frac{1}{\cos x} \quad (\cos x)' = -\sin x = -\sin x \quad \sin x = -\cos x
\]

So if \(g(x) = \sin x, f(x) = \cos x \)

\[
g(0) = -f'(0) = 0 \\
g''(0) = -f'''(0) = 0 \\
g''(0) = -f''(0) = 1 \\
g'''(0) = -f''(0) = -1 \\
g''(0) = f(4)(0) = -1 \\
g''(0) = -f(6)(0) = 1
\]

\(\Rightarrow \) only odd terms survive, signs alternate

\[
\sin x : T_n(x) = \sum_{u=0}^{n} \frac{(-1)^u}{(2u+1)!} x^{2u+1}
\]

\[
= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
\]

memorize!
Also useful (try yourselves!):

\[
\log(1-x) = -\sum_{k=1}^{n} \frac{x^k}{k} \quad \text{as } x \to (-1)
\]

\[
\log(1+x) = \sum_{u=1}^{\infty} \frac{(-1)^u x^u}{u}
\]

\[
\frac{1}{1-x} = \sum_{u=0}^{\infty} x^u
\]

So far; if they gave us \(N \), we find \(T_n(x) \) (as before \(n \to f^{(n)}(x) \to f^{(n)}(a) \to C_n \to T_n(x) \))

and to estimate some \(M = f(x_1) \):

\[
f(x_1) \approx T_n(x_1) \equiv \text{know how to calculate}
\]

In general

Of course \(T_n(x) \neq f(x) \) so there is some error.

We said: \(f(x) = T_n(x) + \text{error} \)

...call it \(R(x) \)
We constructed the Taylor polynomials hoping to approximate functions \(f \) using information about the given function \(f \) at exactly one point \(x = a \). How well does the Taylor polynomial of degree \(n \) approximate the function \(f \)?

One way of looking at this question is to ask for each value \(x \), what is the difference between \(f(x) \) and \(T_n(x) \)?

If we call this difference the remainder \(R_n(x) \), we can write

\[
f(x) = f(a) + f'(a)(x-a) + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)
\]

approximation of order \(n \) + correction

Can find an expression for this remainder:

Lagrange Remainder Formula:

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
\]

for some \(c \) between \(a \) and \(x \).
Remarks:

1. \(\lim_{x \to a} = |x - a| \to 0 \)
 \(\Rightarrow \) \text{error becomes smaller}

2. \(\lim_{n \to \infty} \) \text{error becomes smaller}

3. \(n \)-th approximation has error involving \(\text{nth derivative} \)

4. \(C \) depends on both \(x \) and \(a \)

If we could actually find this number \(C \), we could
know the remainder exactly for any given value of \(x \).

However, if you look at the proof of this formula, you
would see that this number \(C \) comes from the
Mean Value Theorem (we will cover soon).

\(C \) tells you such a \(C \) exists but not \(\text{where} \)
its exact value is.

We can ask: \text{What is the worst error we}
could make in approximating \(f(x) \) using a Taylor
polynomial of degree \(n \) about \(x = a \)?
We focus our attention on \(|\ln (x)| \) (why are we about the magnitude of \(\ln \) ?)

Notice we know everything except \(f^{(n+1)}(c) \), so our goal is to find a bound on \(|f^{(n+1)}(t)| \) that works for all values of \(t \) in the interval containing \(x \) and \(a \).

I.e., we are looking for a positive number \(M \) such that

\[
|f^{(n+1)}(t)| \leq M \quad \text{for all } t \in (x, a) \quad \text{(or } (a, x) \text{)}
\]

\[
\Rightarrow |f^{(n+1)}(c)| \leq M \quad \text{(since } c \text{ is such a number)}
\]

\[
\Rightarrow \ln (x) \leq \frac{M}{|x-a|^{n+1}}
\]

Ex] Suppose we wish to estimate \(\ln x \) using a Taylor approximation of order 1 (L.A.), using \(a = 9 \)
and give an estimate on the size of the error $|r_1(10)|$.

First, we note that $f(x) = f(9) + f'(9)(x-9) + r_1(x)$

$$\Rightarrow \sqrt{x} = 3 + \frac{1}{6} (x-9) + r_1(x)$$

$$\Rightarrow \sqrt{10} \approx 3 \frac{1}{6}$$

Estimate $|r_1(10)|$: we first need to find M s.t.

$$|f''(t)| \leq M \text{ for all } t \text{ in } [9,10]$$

Now, $f''(t) = \frac{-5}{4t^{3/2}} \Rightarrow |f''(t)| = \frac{5}{4t^{3/2}}$

and want to make this as big as possible on $[9,10]$

As $t \rightarrow \frac{1}{\sqrt{5}}$ ("fizz principle") so it's largest

of the left-hand endpoint, $t = 9$

$$\Rightarrow M = \frac{5}{4 \cdot 9^{3/2}} = \frac{5}{108}$$

(my error M works, think about it)
x=10
\[|h_x(10)| \leq \frac{1/108}{9!} \]
\[|l_0 - 9\|^2 = \frac{1}{9!} 216 \]

We will discuss this later but noticing that...

on \([9,10]\) \(f''(t)\) is always negative \(\Rightarrow\) concave (down)

\(\Rightarrow\) tangent line always lies above the curve

\[y = \sqrt{x} \Rightarrow \text{we are overestimating } \sqrt{10} \text{ by LA} \]

Ex. Approximate \(\sin(0.5)\) using a Maclaurin polynomial of degree 3.

\[\text{Notice that instead of estimating } M_0 = \sin(-0.5) \]

since \(\sin(-0.5) = -\sin(0.5)\) we can estimate

\[M_0 = \sin(0.5) \quad (\text{and then use } M_0 = -M_0) \]

\[\sin x = x - \frac{x^3}{3!} + R_3(x) \]

\[\sin(0.5) \approx 0.5 - \frac{0.5^3}{3!} = \]

\[\frac{1}{2} - \frac{1}{24} = \frac{23}{48} \Rightarrow \sin(-0.5) \approx \frac{\pi}{2} \]

\[-\frac{23}{48} \]
To estimate the error:
\[\frac{d^4 \sin t}{dt^4} = \frac{\text{error}}{\sin t + 1} \]

mean 4th derivative of \(\sin t \)

An easy choice (one such bound) would be \(M = 1 \)

since \(|\sin x| \leq 1 \) always.

We can do a bit better here:

Notice that the tangent line of \(\sin x \) at \(x = 0 \)

is \(\ell_t(x) = f'(0)(x-0) + f(0) \)

\[\ell_t(x) = t \]

\(q(x) : \text{tangent at 0} \)

and we can easily check (do it!) that it lies above the graph of \(f(x) \) for \(x \in [0, 0.5] \)

i.e., \(\sin t \leq \ell_t(0) = t \) (for \(t \in [0, 0.5] \))

\[\Rightarrow \sin (0.5) \leq 0.5 \]

\[- \frac{1}{8} \]

\[\Rightarrow M = \frac{1}{169} \]
Another category of problems:

What degree Maclaurin polynomial do you need to approximate \(\cos(0.1) \) to 5 decimal places of accuracy? i.e., the give you a bound on the error and want you to solve for \(n \).

Think about it! Time permitting I will do an example like that later on.

§ 3.5 Finding maxima and minima

In the first example we went about maximizing the function

\[
\frac{1}{4(1)}
\]

on \([3,10]\) to find an upper bound for the error/minute.

We made use of the fact that \(f(x) \) is decreasing hence the maximal value will be attained at the left-hand endpoint. In that particular case we were very lucky.