Approximating functions near a specified point

Suppose we are interested in the values of some function \(f(x) \) for \(x \) near some fixed point \(a \).

E.g., suppose you want to compute by hand or at least estimate \(f(0.0002) \), for

\[
\frac{2x^2 - 3}{x^2 - 3x + 4}
\]

is a mess... If you are all with an approximation you can say (informally): \(x \approx 0 \), \(f(x) \) is continuous at 0 (check!!!)

So \(f(0.0002) \approx f(0) = -\frac{3}{4} \)

Remarks: (i) notice that if \(f \) is not continuous, we could have something like this

\[
\begin{array}{c}
-3 \\
\uparrow \\
\frac{3}{4} \\
\downarrow \\
0.0002
\end{array}
\]

E.g., a huge jump
(ii) even if \(f \) is continuous, we can still making a large error:

\[
\begin{array}{c}
\text{error} \\
\text{0.0002} \\
0
\end{array}
\]

and that's because the function grows very quickly between 0 and 0.0002.

We suspect that the smoother (i.e., slope of tangent line is not too steep) the function is close to the point we care about (here \(x = 0.0002 \)) the easier it would be to approximate it by a value of a nearby point (here \(a = 0 \)) in the sense we are not making a huge error.

In the above examples, there was nothing special about \(x = 0.0002 \). We could have tried to approximate \(f(x) \) for all \(x \)'s that are reasonably close to \(a = 0 \).
In other words we want to approximate \(f(x) \) by

\[
\lim_{x \to a} f(x) = f(a)
\]

for all \(x \) "close" to \(a = 0 \).

\[f(x) \approx f(a), \quad x \approx a \]

Zeroth approximation (or constant approximation)

(approximating all values for \(x \) by a constant number for \(x \approx a \))

![Graph showing approximation error]

want to approximate \(f(x) \) (for all \(x \approx a \)) by \(f(a) \), we are of course introducing some error, which, in general, will increase the further we go from \(a \).

The thing to keep in mind is that the approximation should only be valid locally (close to the point \(a \)) and should improve the closer we are to \(a \). The smoother the function is.
More examples (estimate the given numbers below).

(a) \[\sin(-0.00073) \]

Set \(f(x) = \sin x \). \(x = -0.00073 \approx 0 \)

\[-\sin(-0.00073) \approx \sin(0) = 0 \]

(which is a pretty good approximation, use a calculator to see it!)

(b) \[e^{0.1} \]

Set \(f(x) = e^x \). \(x = 0.1 \approx 0 \)

\[e^{0.1} \approx e^0 = 1 \]

Using a calculator \(e^{0.1} = 1.105171... \)

\[\text{error} = |\text{actual value} - \text{approximation}| \]

\[= |1.105171... - 1| = 0.105171... \]

(c) \[\sqrt{5.03} \]

Set \(f(x) = \sqrt{x} \) (or \(g(x) = \sqrt{4+x} \))

For \(x \approx 4 \) \(\sqrt{5.03} \approx f(4) = 2 \) or \(\sqrt{5.03} = \sqrt{4+1.03} = g(1.03) \approx g(0) = \sqrt{4} \)

"true value" \(\approx 2.4277... \) \(\approx \text{error} = 0.24277... \)

\[-4 \]
First approximation - the linear approximation

We can improve on our zeroth approximation by allowing the approximating function to be a linear function of x, rather than just a constant function.

The idea is that for a (fairly smooth function)

the tangent line of the graph of the function at some point a is what locally the graph looks like if we zoom in on the point a.

We see from the picture that

$$f(x) \approx l(x)$$

where $l(x)$ is the tangent line of f at a.

There is of course some error in the approximation (which becomes smaller and smaller the closer we are to a).
Linear approximation

The 1st (or linear) approximation of \(f(x) \) about \(x = a \) is:

\[
 f(x) \approx f(a) + f'(a) (x-a) =: g(x)
\]

tangent line at \((a, f(a))\)

and the error is:

\[
|e| = |f(x) - g(x)|
\]

downward from approximated value

Use a linear approximation to estimate

Examples:

1. \(\sqrt{1.2} \): let \(f(x) = \sqrt{x} \); want to approximate \(f(1.2) \)
so we will use a L.A. about \(a = 1 \)
\[f(a) = f(1) = \sqrt{1} = 1; \quad f'(x) = \frac{1}{\sqrt{x}} \quad \Rightarrow \quad f'(a) = f'(1) = \frac{1}{2} \]

2. **L.A.:**

\[
\sqrt{1.2} \approx 1 + \frac{1}{2} \left(1.2 - 1 \right)
\]

\[
= 1 + \frac{1}{2} - 0.2 = 1.1
\]

Comment: Could have come up with a better approximation by using \(a = 1.21 \) (since \(\sqrt{1.21} = 1.1 \) and L.A.:

\[
\sqrt{1.2} \approx \ldots \approx 1.095
\]

\[(15)^{1/4} \]: Let \(f(x) = x^{1/4} \). We need to approximate \(f(15) \). Since \((16)^{1/4} = 2 \) is easy to calculate, we will use a L.A. about \(a = 16 \). We have \(f(a) = f(16) = 2 \) and since \(f'(x) = \frac{1}{4} x^{-3/4} \) we have:

\[
f'(a) = f'(16) = \frac{1}{4} \times 16^{-3/4}
\]

\[
= \frac{1}{4} \left[(16)^{1/4} \right]^{-3} = \frac{1}{4} \times \frac{1}{8} = \frac{1}{32}
\]

2. **L.A.:**

\[
(15)^{1/4} \approx 2 + \frac{1}{32} (15 - 16) = 2 - \frac{1}{32} = \frac{63}{32}
\]

\[2. \quad (15)^{1/4} \approx 2 + \frac{1}{32} (15 - 16) = 2 - \frac{1}{32} = \frac{63}{32} \]
\[\log 3 : \text{ always we a for which calculations are easy} \]

Let \(f(x) = \log x \), we need to approximate \(f(3) \)

Solu 1
\[
\begin{align*}
\log 4 &= \log 1 = 0 \\
\text{and } f'(x) &= \frac{1}{x} \\
\Rightarrow & f'(1) = 1
\end{align*}
\]

Solu 2
Try about \(a = 1 \) again but for a different function:
\[f(x) = -\log \frac{1}{x} \]
Notice
\[
\log 3 = -\log \frac{1}{3} \approx -(0 + 1) \left(\frac{4}{3} - 1 \right) = \frac{2}{3}
\]

Solu 3
\[
a = e^0.1 \log e = 1, \quad (\log x)' = \frac{1}{x}
\]

Therefore
\[
\log 3 \approx \log e + \frac{1}{e} (3 - e) = 1 + \frac{3}{e} - 1 = \frac{3}{e}
\]