To find the inverse for \(y = f(x) \):

1. "Solve for \(x \)". Get \(x = g(y) \).
2. "Exchange \(x, y \)". Get \(y = g(x) \).

Not always easy:

Cannot solve for \(x \) \(\Rightarrow \) since no unique \(x \) for each \(y \) \(\Rightarrow \) no inverse function.
Examples

1) Find the function inverse to \(y = x^2 + 3 \)

\[\text{Solving for } x: \quad y - 3 = x^2 \implies x = \sqrt[2]{y - 3} \]

We write the inverse function as \(g(x) = \sqrt[2]{x - 3} \)

2) Consider the function \(y = \sqrt{x - 1} \) (domain \(x \geq 1 \))

Find the inverse function in the form \(x = g(y) \)

\[y = \sqrt{x - 1} \implies y^2 = x - 1 \]
\[\implies x = y^2 + 1, \text{ for } y \geq 0 \]

\[\text{Domain of inverse is the range of the original function.} \]
For the inverse function to exist (and pass the vertical line test) we need our original function \(f(x) \) to pass the horizontal line test, or equivalently to be 1-1 ("one-to-one").

If \(x_1 \neq x_2 \), then \(f(x_1) \neq f(x_2) \).

Or, no horizontal line \(y = c \) intersects the graph of \(y = f(x) \) more than once.
Let \(f \) be 1-1 with domain \(A \) and range \(B \). Then its inverse function is denoted by \(f^{-1} \) and has domain \(B \) and range \(A \).

It is defined by \(f^{-1}(y) = x \) whenever \(f(x) = y \) for any \(y \in B \).

\[f^{-1} \text{ maps } y \text{ back to } x \]

\(f^{-1} \) undoes \(f \)

Because of this we have

\[f^{-1}(f(x)) = x \text{ for any } x \in A \]

\[f(f^{-1}(y)) = y \text{ for any } y \in B \]

\[f^{-1}(x) \neq \frac{1}{f(x)} \]
Ex 1. **Inverse Trigonometric Functions** (§ 2.11)

Let \(y = f(x) = \sin x \). Find the inverse function, that is, the function which takes \(y \) and returns a unique \(x \)-value so that \(\sin x = y \).

For each real number \(y \), the number of \(x \)-values that obey \(\sin x = y \) is exactly the number of times the horizontal straight line \(y = y \) intersects the graph of \(\sin x \).

- When \(-1 \leq y \leq 1\): infinitely many intersection points
- \(y < -1 \) or \(y > 1 \): \(y = \) no intersection

The horizontal line test shows that \(\sin(x) \) is not 1-1.

Now consider the function \(y = \sin x \) with domain \(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \).
Same formula but the domain has been restricted so that the horizontal line test is satisfied.

\[-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \]

So for each \(-1 \leq y \leq 1 \), there is exactly one \(x \), call it \(x \) that obeys both:

\[\sin x = y \]

\[-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \]

→ this unique value \(x \) is typically denoted \(\arcsin(y) \).

That is:

\[\sin(\arcsin(y)) = y \]

\[-\frac{\pi}{2} \leq \arcsin(y) \leq \frac{\pi}{2} \]

Renaming \(y \rightarrow x \), the inverse function \(\arcsin \) is defined for all \(-1 \leq x \leq 1\) and determined by the equation.
\[\sin^{-1}(\sin(x)) = x \quad \text{and} \quad -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \]

(we will sometime see \(\sin^{-1}(x) \) for \(\arcsin x \),

Remember! \(\sin^{-1}(x) \neq \frac{1}{x} \))

Examples:

1. What is \(\arcsin 1 = ? \)

\[\sin: \text{ we are looking for } z = \arcsin 1 \]

\[\Rightarrow \sin z = 1, \quad \text{for} \quad -\frac{\pi}{2} \leq z \leq \frac{\pi}{2} \]

\[\sin \frac{\pi}{2} = 1 \quad \Rightarrow \quad z = \arcsin 1 = \frac{\pi}{2} \]

2. \(\arcsin \frac{1}{2} = ? \)

\[\text{we are looking for } z = \arcsin \frac{1}{2} \]

\[\Rightarrow \sin z = \frac{1}{2}, \quad \text{for} \quad -\frac{\pi}{2} \leq z \leq \frac{\pi}{2} \]

\[\sin \frac{\pi}{6} = \frac{1}{2} \quad \text{and} \quad -\frac{\pi}{2} \leq \frac{\pi}{6} \leq \frac{\pi}{2} \]

\[\Rightarrow \arcsin \frac{1}{2} = \frac{\pi}{6} \]
3. Is $\arcsin 0 = 2\pi$ or 0?

\[\sin(2\pi) = \sin(0) = 0 \]

but only $-\frac{\pi}{2} \leq 0 \leq \frac{\pi}{2}$

Generally

$\arcsin (\sin x) = $ the unique angle θ

$= x$

between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$

obeying $\sin \theta = \sin x$

4. What is $\arcsin (\sin \left(\frac{11\pi}{16} \right))$?

Since we would be tempted to say it is

\[\frac{11\pi}{16} \]

but $\frac{11\pi}{16} > \frac{\pi}{2}$ (check!)

so how do we find the correct answer?
We start by sketching the graph of $\sin x$.

Notice that the lobe is symmetric about $x = \frac{\pi}{2}$.

I am looking for the x-value before $\frac{\pi}{2}$ that corresponds to the y-value $\sin \left(\frac{11\pi}{16} \right)$.

Symmetric about $\frac{\pi}{2}$: $\sin \left(\frac{\pi}{2} - \theta \right) = \sin \left(\frac{\pi}{2} + \theta \right) = \cos \theta$.

Notice that $\sin \left(\frac{11\pi}{16} \right) = \sin \left(\frac{\pi}{2} + \frac{3\pi}{16} \right) = \sin \left(\frac{\pi}{2} - \frac{3\pi}{16} \right) = \sin \left(\frac{5\pi}{16} \right)$.

And $\frac{5\pi}{16}$ is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.

$\arcsin \left(\sin \left(\frac{11\pi}{16} \right) \right) = \frac{5\pi}{16}$.
In general

\[\sin^{-1}(\sin x) = x, \text{ for } -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \]

\[\sin(\sin^{-1} x) = x, \text{ for } -1 \leq x \leq 1 \]

The inverse cosine function is handled similarly

\[\cos^{-1}(\cos x) = x, \text{ for } 0 \leq x \leq \pi \]

\[\cos(\cos^{-1} x) = x, \text{ for } -1 \leq x \leq 1 \]

\[(1): \cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta \]

\[(2): \cos\left(\frac{\pi}{2} + \theta\right) = -\sin \theta \]

\[(3): -\sin \theta \]

→ restrict on \[0 \leq x \leq \pi \]

→ \[\arccos y = x \Leftrightarrow \cos x = y \]

and \[0 \leq x \leq \pi \]
\[\cos^{-1}(\cos x) = x, \quad \text{for} \quad 0 \leq x \leq \pi \]

\[\cos(\cos^{-1} x) = x, \quad \text{for} \quad -1 \leq x \leq 1 \]

Ex.

(1) \[\cos^{-1}(\cos(7\pi)) = ? \]

\[\cos(7\pi) = \cos(6\pi + \pi) = \cos(3 \cdot 2\pi + \pi) = \cos \pi = -1 \in \text{domain of arccos} \]

What if \(x \) is an \(\pi \) in the domain?

\[\implies \cos z = -1 \quad \text{and} \quad 0 \leq z \leq \pi \]

\[\cos \pi = -1 \quad \text{and} \quad \pi \quad \text{is in the domain} \]

\[\implies \cos^{-1}(\cos(7\pi)) = \pi \]

(2) \[\sin(\sin^{-1}(\pi)) = ? \quad \pi > 1 \implies \pi \notin \text{domain of } \arcsin \]

\([\text{the expression cannot be evaluated.}]\)
Can be made -1 by restricting to the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$\tan^{-1} y = x \iff \tan x = y$ and $-\frac{\pi}{2} < y < \frac{\pi}{2}$

- **Derivatives of Inverse Trig Functions**
 - set $\theta(x) = \arcsin x$; want to find $\frac{d\theta}{dx}$

 \Rightarrow take sine of both sides & get:
\[\sin \left(\theta(x) \right) = x \quad \text{(assuming of course)} \]

\[\frac{d}{dx} \cos \left(\theta(x) \right) \cdot \frac{d\theta}{dx} = 1 \quad \text{dom} \left(\arcsin(x) \right) \]

\[\text{what I am looking for} \]

\[\Rightarrow \quad \frac{d\theta}{dx} = \frac{1}{\cos(\theta(x))} = \frac{1}{\cos(\arcsin(x))} \]

\[\frac{d}{dx} \arcsin(x) = \frac{1}{\cos(\arcsin(x))} \]

\[this \ is \ a \ correct \ answer \ but \ it \ is \ rather \ ugly \ and \ also \ involves \ \arcsin(x) \ for \ which \ we \ don't \ have \ an \ explicit \ formula. \]

We can however do the following:
$$\theta(x) = \arcsin x \rightarrow \sin \theta = x = \frac{x}{\sqrt{1-x^2}} \quad \frac{1}{2} \leq \theta \leq \frac{\pi}{2}$$

Draw a right triangle with one angle being
\[\theta \] (\(= \arcsin x \)).

Since by \((*)\) \(\sin \theta = \frac{x}{1} \) we can make

the side opposite to the angle \(\theta \) of length \(x \) and the hypotenuse of length \(1 \)

\[\begin{align*}
\text{hypotenuse} & = 1 \\
\text{opposite side} & = x \\
\text{adjacent side} & = \sqrt{1-x^2}
\end{align*} \]

(by Pythagoras, the adjacent has length \(\sqrt{1-x^2} \))

and so \(\cos (\arcsin x) = \frac{\sqrt{1-x^2}}{1} = \sqrt{1-x^2} \)

Thus
\[\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}} \]
Using similar ideas (work it out yourselves & check §2.12 in the notes)

one can get that:

\[\frac{d}{dx} \arcsin(x) = \frac{1}{\sqrt{1-x^2}} \]

\[\frac{d}{dx} \arccos(x) = -\frac{1}{\sqrt{1-x^2}} \]

\[\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2} \]

(and I don't care much about \(\frac{d}{dx} \arccsc(x) \) or \(\arccsc(x) \) or \(\arccot(x) \))

but they follow the same way.