$\introduction - Motivation - Tangent Lines -$

$\text{The Velocity Problem - Intro to Limits}$

(§1.1 - 1.3 from the notes)

Course = Differential Calculus

→ deal with "derivatives"

to properly describe them, need some tools:

- tangent lines
- limits

$\text{Tangent Line Problem (§1.1 on the notes)}$

Need to define "tangent" - won't do formally, let's draw some pictures

$\text{[Diagram showing tangent lines and non-tangent lines]}$

It's tempting to say a line is tangent to a curve at a point if they only intersect once. Not good → not a tangent line
On the other hand: \(\text{tangent to the curve at point } p \)

Remark: tangency is local

Instead of

"Definition": If we zoom in on the point \(p \), the more the graph of the function looks like a straight line - that line is the tangent line at \(p \).

* If we zoom in at a different point, we will find a different tangent line.

Now go back and compare the previous pictures to make sure we understand what a tangent line is.

Using this idea of zooming in at a particular point, drawing a tangent line is not hard.

How about finding its equation then?
Ex: Find the equation of the tangent line to the curve $y = x^2$ at the point θ with coordinates $(x, y) = (1, 1)$

Sln: First of all, equation of a line:

$$y - y_1 = m(x - x_1)$$

where

$$m = \frac{y_2 - y_1}{x_2 - x_1} \quad \text{(slope)} \quad (x_1, y_1) \quad \text{points the line goes through}$$

So we need either 2 points on the line or 1 point and the slope $\rightarrow x$ (for line)

At this point we don't really know how to find the slope (require "differentiation" - will get to that soon)

so we can only try to see if the other approach works (if we have two points, can also find the slope by θ)
Problem (?): But we only have one point!

\(P(1,1) \)

What we will do is to approximate:

We will approximate the tangent line by drawing a line that passes through \(P(1,1) \) and some nearby point \(a \).

Schematically:

```
\[ \text{\includegraphics{tangent-line-diagram.png}} \]
```

(The idea is that letting a “come closer” to \(P \) this sequence of lines we draw will eventually “get close” to the tangent line)

Rather than picking actual numbers \(a \) on the curve we will write the second point \(A \) as \(A(1+h, (1+h)^2) \). Some remarks are in order:
A point on the curve $y = x^2$ has in general coordinates (a, a^2) since if I tell you $X = a$ (for any a in the domain) $y = x^2 \Rightarrow a^2$. Thus to $x = a$, the corresponding $y = a^2$.

I want to pick a very close to $P(1,1)$, so it makes sense to only consider $h = \text{very small}$ since $1 + h \approx 1$. Then to $x = 1 + h$ corresponds the $y = (1 + h)^2$ (since x want a point Q on the curve).

[It's all if you are not comfortable yet with thinking h as a variable, for now think of it as very small number. h as h varies (getting closer to 0), the corresponding points Q come closer and closer to P.]
But now we have two points to work with (x_1, y_1) and for a fixed h, $Q(1+h, (1+h)^2)$, so back to our formula for a line:

Find $M = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(1+h)^2 - 1}{1+h - 1} = \frac{2h + h^2}{h} = h + 2$

Slope of this approximating line, we call it the "secant" line.
Now, every different \(h \) will give us a different slope; hence a different line (and these lines are NOT our tangent line) but notice that the idea was to kind of zoom in at \(P \), which in our process translates to taking \(Q \) to be very close to \(P \) (which can be achieved by taking \(h \) very close to 0)

If we, e.g., take \(h \) smaller and smaller

<table>
<thead>
<tr>
<th>(h)</th>
<th>(m = 2 + h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.1</td>
</tr>
<tr>
<td>0.01</td>
<td>2.01</td>
</tr>
<tr>
<td>0.001</td>
<td>2.001</td>
</tr>
</tbody>
</table>

we see that \(m \) becomes closer and closer to 2. Mathematically we write this as

\[
\lim_{h \to 0} (2 + h) = 2
\]

limits will be the topic of another discussion
Our tangent line can be thought of as the end of this process: the slope of the secant lines (i.e., lines like our \(l_1, l_2, l_3, l_4 \)) become closer to that of the tangent line.

We now know the slope of the tangent line is \(m = 2 \), and that the tangent line goes through \(P(1, 1) \):

\[
y - y_1 = m(x - x_1)
\]

\[
y - 1 = 2(x - 1) = 2x - 2 \Rightarrow y = 2x - 2 + 1
\]

\[
y = 2x - 1
\]

Alternatively, the equation of the line is given by \(y = mx + b \); \(m \) is the slope as before so to find \(b \) we use the information that the point \((1, 1) \) lies on the line.

\(\Delta \) the graph and the tangent line share the point \(P \).
Limits and derivatives are very useful in real life applications too (especially if you are in Applied Science, Engineering, Economics or Finance).

Problem: drop a ball from the top of a very tall building. Let \(t \) be the elapsed time (measured in seconds) and \(s(t) \) the distance the ball has fallen (in meters). So \(s(0) = 0 \).

At what speed / with what velocity is the ball falling after 1 second? or better precisely 4 sec after it's dropped or velocity of the ball at the 1 second mark?

Galileo worked out that \(s(t) \) is a quadratic function: \(s(t) = 4.9 t^2 \).
Notice: something subtle is going on, what do we mean by the "velocity at \(t=1 \)?

- If an object is moving at a **constant velocity** then that velocity is just

\[
V = \frac{\text{distance travelled}}{\text{time fallen}}
\]

- However, in our case, the object is being acted on by gravity and its speed is definitely not constant.

So instead of asking for **THE** velocity, let us examine the "average velocity" over a certain window of time:

\[
\text{average velocity} = \frac{\text{distance moved}}{\text{time fallen}} = \frac{\text{difference in distance}}{\text{difference in time}} = \frac{s(t_2) - s(t_1)}{t_2 - t_1}
\]

e.g. what is the Vave between 1 and 1.1 seconds:

\[
\text{Vave} = \frac{s(1.1) - s(1)}{1.1 - 1} = \frac{4.9 \cdot (1.1)^2 - 4.9 \cdot 1}{1.1 - 1} = 10.29 \text{ m/s}
\]
Notice that the line I've drawn has $\text{slope} = \frac{\text{change in } y}{\text{change in } x} = \frac{\text{difference in } s}{\text{difference in } t} = v_{ave}!$

For demonstration purposes, let's look at the average velocity over shorter and shorter time-windows:

<table>
<thead>
<tr>
<th>Time Window</th>
<th>Average Velocity ($= \text{slope of second line}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \leq t \leq 1.1$</td>
<td>10.29</td>
</tr>
<tr>
<td>$1 \leq t \leq 1.01$</td>
<td>9.849</td>
</tr>
<tr>
<td>$1 \leq t \leq 1.001$</td>
<td>9.8049</td>
</tr>
<tr>
<td>$1 \leq t \leq 1.0001$</td>
<td>9.80049</td>
</tr>
</tbody>
</table>

→ average velocity gets closer and closer to 9.8.
More precisely, \(V_{ave} = \frac{5(1+h) - 5(1)}{(1+h) - 1} \) expand
\[
= \frac{4.9(1+h)^2 - 4.9}{h} = \frac{9.8 + 4.9h}{h}
\]
\[
= \frac{h}{h}(9.8 + 4.9h)
\]

As \(h \to 0 \) (i.e., make the time-window "infinitesimally small") the average velocity becomes the \textbf{instantaneous velocity} (same as with secant and tangent lines).

This is our new limit:
\[
V(t) = \lim_{h \to 0} \frac{5(1+h) - 5(1)}{h} = \lim_{h \to 0} \frac{h}{h}(9.8 + 4.9h)
\]
\[
= 9.8 \text{ m/s}
\]

More generally, the \textbf{instantaneous velocity} at time \(t = a \) is defined as
\[
V(a) = \lim_{h \to 0} \frac{5(a+h) - 5(a)}{h}
\]