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ABSTRACT A basic evolutionary problem posed by the
Iterated Prisoner’s Dilemma game is to understand when the
paradigmatic cooperative strategy Tit-for-Tat can invade a
population of pure defectors. Deterministically, this is impos-
sible. We consider the role of demographic stochasticity by
embedding the Iterated Prisoner’s Dilemma into a population
dynamic framework. Tit-for-Tat can invade a population of
defectors when their dynamics exhibit short episodes of high
population densities with subsequent crashes and long low
density periods with strong genetic drift. Such dynamics tend
to have reddened power spectra and temporal distributions of
population size that are asymmetric and skewed toward low
densities. The results indicate that ecological dynamics are
important for evolutionary shifts between adaptive peaks.

The Prisoner’s Dilemma game contains the basic paradox for
the evolution of reciprocal altruism (1, 2). In this game, each
of two players can either cooperate or defect. This leads to four
possible payoffs S , P , R , T: if one player cooperates and
the other defects, the cooperator gets S and the defector gets
T, if both players cooperate they both get R, and if both defect
they get P. No matter what the other does, it is always best to
defect (R , T and S , P), but if both would cooperate they
would both receive a higher payoff than if both defect (P, R).
If payoffs are interpreted as Darwinian fitness, this game
exemplifies the advantage of selfish mutants and the evolution
of maladaptive noncooperative behavior. The paradox has a
solution in the Iterated Prisoner’s Dilemma (1), in which
opponents meet again with a certain probability. In this new
game, the Tit-for-Tat (TFT) strategy—cooperate in the first
round, then do whatever the opponent did in the previous
round—does very well against a wide variety of other strate-
gies (3). TFT captures the essence of reciprocal altruism (4),
and once established, TFT can catalyze the evolution of even
more cooperative strategies (5, 6). Thus, TFT represents a
cornerstone in the evolution of cooperation, and it is important
to determine the conditions under which TFT can evolve in a
population of pure defectors.
We consider the evolutionary game between the strategies

TFT and AD—always defect, regardless of the opponent’s
decisions—in the Iterated Prisoner’s Dilemma. Let w be the
probability that opponents meet again. Then the payoffs
between TFT and AD are as shown in Table 1, in which the
entries are the payoffs received by the strategy in the left
column when playing against the strategy in the top row. For
example, when TFT plays against AD, it gets S in the first
round and P in all successive rounds, hence a total of S 1 wP
1 w2P 1 . . . . AD gets T in the first round and P thereafter.
Thus the payoff for TFT is S 1 wPy(1 2 w), whereas that of
AD is T 1 wPy(1 2 w). The other payoffs are calculated

similarly. In a population consisting of a mixture of TFT and
AD, the payoffs of the two strategies depend on their fre-
quencies. If p is the frequency of TFT in the population, then
the payoff for a TFT player in this population is

lTFT 5 pzRy~1 2 w! 1 ~1 2 p!z~S 1 wPy~1 2 w!!, [1]

and the payoff to an AD player is

lAD 5 pz~T 1 wPy~1 2 w!! 1 ~1 2 p!zPy~1 2 w!. [2]

In turn, these payoffs determine the dynamics of the frequen-
cies of TFT and AD. More precisely:

pt11 5
lTFT

lTFT 1 lAD
z pt, [3]

where pt is the frequency of TFT at time t. If w . (T 2
R)y(T 2 P), the dynamics given by Eq. 3 have three
equilibria: one in which TFT is absent (p 5 0), one in which
AD is absent (p 5 1), and an intermediate equilibrium given
by p* 5 (P 2 S)(1 2 w)y[R 1 P(1 2 2w) 2 (1 2 w)(T 1 S)].
The two extreme equilibria are locally stable, which means
that both AD and TFT are evolutionary stable, that is, a
population consisting of either strategy alone cannot be
invaded by rare mutants of the other strategy. The interme-
diate equilibrium is unstable and represents a threshold; it is
the minimal frequency that TFT has to reach to get estab-
lished and replace AD. It has been argued (1, 7) that spatial
structure can make it possible for TFT mutants to reach this
frequency and invade an AD population because TFT indi-
viduals can profit from mutual cooperation when they are
spatially aggregated. In a similar vein, we study the temporal
clustering that is caused by genetic drift by putting the game
into a population dynamic framework. To do this, we inter-
pret the payoffs as growth rates in an ecological model that
includes density dependence. The basic model we use is
Bellow’s (8) difference equation

Nt11 5 lNt exp@2~aNt!b# [4]

(Fig. 1). Nt takes on integer values and gives the number of
individuals present at time t. We include demographic sto-
chasticity by interpreting the per capita fitness

F~Nt! 5 l exp@2~aNt!b# [5]

as the mean of the Poisson distributed offspring of each adult.
This leads to an individual-based model exhibiting different
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Table 1. Payoffs in the Iterated Prisoner’s Dilemma

TFT AD

TFT Ry(1 2 w) S 1 wPy(1 2 w)
AD T 1 wPy(1 2 w) Py(1 2 w)
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dynamic regimes depending on parameter values (9), and we
are interested in those regimes that exhibit irregular fluctua-
tions (Fig. 1). For the game between TFT and AD, we extend
the model by assuming that the intrinsic growth rate l of each
strategy is given by the payoff of the game:

Nt11
TFT 5 lt

TFTNt
TFT exp@2~aNt!b#

Nt11
AD 5 lt

ADNt
AD exp@2~aNt#b!]. [6]

The total population size Nt on the right-hand side of Eq. 6
is the sum of the population sizes of TFT and AD: Nt 5 NtTFT
1 NtAD. The growth rates ltTFT and ltAD are the frequency-
dependent payoffs at time t resulting from the Iterated Pris-
oner’s Dilemma between TFT and AD. Thus we assume that
the growth rates of the two strategies are frequency-dependent
and that the population is regulated by the total number of
individuals, regardless of which strategy they play. Determin-
istically, Eq. 6 yields nothing new; both pure populations are
stable against invasion by mutants of the other strategy, and
there is an intermediate unstable threshold equilibrium for the
frequency of TFT.
Things change, however, when demographic stochasticity

is included. Starting with a population of AD and allowing
for TFT mutants to appear sporadically, TFT can get estab-
lished, depending on the ecological dynamics exhibited by
the resident AD population (Fig. 2). There are two dynamic
features that enable invasion. The first are population
crashes, during which only very few individuals survive,
among them by chance enough TFT mutants that had
appeared previous to the crash, and the second are long
periods of low population numbers following the crashes, in
which genetic drift is important. For example, if the resident
AD population exhibits the dynamics shown in Fig. 1A, both
these effects are present, and TFT mutants are readily able
to reach the threshold frequency due to chance events (Fig.
2A). In the dynamics of Fig. 1B, the crashes are not severe
enough and the periods of low population size not long
enough for TFT to invade (Fig. 2B), whereas in the dynamics
of Fig. 1C, the periods of low population size are still very
short, but because of the higher growth rate, the population
outbreaks are larger, and the subsequent crashes are more
severe than those in Fig. 1B. Therefore, TFT is able to invade
(Fig. 2C), but not as easily as it does in Fig. 2A. Thus the type
of dynamics exhibited by the resident AD population deter-
mines whether and how fast enough TFT mutants can
aggregate due to chance events to cause an evolutionary shift
to the TFT strategy.
The shift from the evolutionary stable strategy AD to the

evolutionary stable strategy TFT is analogous to Wright’s
shifting balance between adaptive peaks (10). This indicates
that our results may be relevant for general evolutionary
questions concerning the speed of stochastic transitions
between locally stable genetic configurations that are sepa-
rated by unstable equilibria. It is therefore desirable to have
a more precise description of the type of ecological dynamics
that make such transitions most likely. As a first step in this
direction, we calculated the power spectra of time series
resulting for different parameter settings in our model by
using the Fast Fourier Transform method described in (11)
(Fig. 3). We classified these spectra by a color index (12) that
roughly indicates whether high frequencies (blue spectra) or
low frequencies (red spectra) dominate in the corresponding
time series. The color index is defined as the ratio between
the area under the lower half of the power spectrum and the
area under the upper half of the power spectrum. If this ratio
is ,1, the upper half of the spectrum comprising the high
frequencies is more important for explaining the f luctua-
tions in the time series, whereas low frequencies are more
important if the color index is .1. It is known that the color

FIG. 1. Three different types of dynamics of Eq. 4. In this model,
the dynamic complexity is determined by the intrinsic growth rate l
and by the parameter b, which reflects the type of competition for
resources that leads to density dependence. The parameter a scales the
carrying capacity of Eq. 4, i.e., the population size at which the per
capita fitness F(N), Eq. 5, is equal to 1 (8). For each of the Nt adults
at time t, we randomly chose the number of offspring from a Poisson
distribution with mean the value of the fitness function, Eq. 5, at the
given population sizeNt. The offspring add up to giveNt11. Low values
of l together with high values of b yield crash dynamics with long
periods of low population size (A; l 5 2.024, b 5 6.8). Decreasing the
competition parameter b (B; l 5 2.024, b 5 4.5) or increasing l (C;
l 5 3.235, b 5 4.8) leads to dynamics in which the long low density
periods are absent. Severe crashes still occur with high l (C). The
parameter a was chosen so that the equilibrium density was 250 in all
three panels and was set to a 5 0.0038 in A, a 5 0.0037 in B, and a 5
0.0041 C.
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of spectra of Eq. 4 can change if the competition parameter
b is varied, whereas the growth rate l is fixed at a low value

(12, 13). As b increases, the periods of low population size
get larger (cf. Fig. 1). Therefore, the autocorrelation in the
time series increases, which leads to power spectra that are
dominated by low frequencies (14), hence to power spectra
with larger color indices. Remarkably, exactly those ecolog-
ical dynamics seem to allow stochastic invasion whose color
index is.1 (Fig. 3). At present, this is no more than a curious
observation, but since red spectra seem to be common in
natural time series (15, 16), we speculate that stochasticity
may be important for evolution in many natural systems.
As mentioned, the correlation between redness of the power

spectrum of a resident time series and the probability of
stochastic invasion of TFT is related to the fact that redness
indicates a high autocorrelation in the resident time series. For
example, the spectrum of the time series shown in Fig. 1A is
reddened because of the long phases of low densities, during
which demographic stochasticity and hence genetic drift are
important. However, if the time series of Fig. 1Awere inverted,
e.g., reflected vertically at a population size of 200, so that
previous low population sizes would be high and vice versa,
then the autocorrelation would be retained, and the color of
the spectrum would be exactly the same as before. Yet invasion
of TFT would clearly be much less likely. Therefore, the color
of a spectrum does not tell the whole story, and additional
information about the distribution of the population sizes over

FIG. 2. Invasion scenarios for different types of dynamics of the
resident population. Eq. 6 was used with demographic stochasticity.
Mutations from AD to TFT occur with a mutation rate that was set
to 0.01 per generation. The runs were started with a pure AD
population. In A, this resident population exhibited the dynamics
shown in Fig. 1A (shaded line). TFT (solid line) typically invades after
a short period of time. In B, in which the resident AD population
exhibited the dynamics shown in Fig. 1B, the periods of low population
size are too short and the crashes not severe enough for TFT to
increase above the threshold frequency. In C, the resident AD
population exhibited the dynamics from Fig. 1C. With these dynamics,
TFT is often able to invade due to stochastic events during population
crashes. The percentages shown in the panels indicate the number of
times TFT was able to invade the corresponding AD resident in 1,000
simulation runs over 1,000 generations. Due to stochasticity, it is
possible that the resident population goes extinct before invasion
occurs. In such a case, we initialized the system in the next time step
again with a number of resident AD individuals. This number was set
to 8 in our simulations and could, for example, be thought of as an
influx from neighboring populations in a spatially extended system.
The parameters a and b in A–C were the same as the corresponding
parameters in Fig. 1 A–C. The parameters for the payoff matrix were
w 5 0.58, S 5 0, P 5 0.85, R 5 2.1, and T 5 3.1 for A and B, and w 5
0.66, S 5 0, P 5 1.1, R 5 2.1, and T 5 3.1 for C. Thus, the threshold
frequency for TFT was p* 5 0.539 in all three panels (A–C).

FIG. 3. Success of TFT invasion attempts in relation to the power
spectrum of the dynamics of the resident AD population. For a range
of b values in Eq. 4, we calculated the power spectrum and the color
index of the corresponding stochastic time series. For low b, the color
index is ,1 and indicates high frequency dominance. As the compe-
tition parameter b is increased, the color index increases above 1, which
indicates red spectra. The solid circles show the percentage of suc-
cessful TFT invasion attempts into a resident AD population exhibiting
the dynamics corresponding to each b value. The invasion scenario was
run 1,000 times for 1,000 generations for a given value of b. The
computations were done for 41 equally spaced b values in the interval
[3.5,7.5]. For low values of b, both dynamic features that allow invasion,
long periods of low population size and population crashes, tend to be
absent. For higher values of b, both features tend to be present.
Invasion of TFT starts to be likely for values of b. 4.5, which is almost
exactly the point at which the color index of the resident AD
population increases above 1. The parameters for the figure were the
same as in Fig. 2A, except that b was varied as described. In addition,
we adjusted the parameter a in Eq. 4 so that the equilibrium density
of the resident population was equal to 250 for all values of b. The
parameter a does not influence the qualitative dynamic behavior of
Eq. 4 (8) and hence does not influence the power spectra of the time
series. The percentages of successful invasion attempts for high b
depend on the mutation rate and on the length of the resident time
series over which invasion was tested (here 1,000 generations). How-
ever, qualitatively, the shape of the invasion curve (solid circles) does
not depend on these parameters.
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time is needed. Such information is provided by the invariant
measure of a population dynamic process (17). The invariant
measure is the frequency distribution of the various population
sizes that are attained at different points in time. The fre-
quency distribution of the time series shown in Fig. 1A is
asymmetric and skewed to low values because the population
is at low densities most of the time, with only occasional
excursions to high densities. In contrast, the invariant measure
would be skewed to high values for the inverted time series.
Therefore, a red power spectrum of the resident AD in
combination with an invariant measure that is skewed to low
population sizes is a strong indicator for high invasion prob-
abilities.
To show the inf luence of the skewness of the invariant

measure on invasion probability of TFT, we have investi-
gated the invasion success for a range of values for the
intrinsic growth rate l while keeping parameters a and b
fixed (Fig. 4). For fixed a and b, increasing l leads to an
increase in the carrying capacity, i.e., to an increase in the
population size at which the per capita fitness F(N) in Eq. 4
is equal to 1 (Fig. 4, curve a). However, increasing l also
increases the complexity and the size of the f luctuations in
the system, and our simulations show that as a consequence,
the skewness of the invariant measure toward low densities
becomes more pronounced. This is ref lected in decreasing
mean population sizes of the resident AD population (Fig. 4,
curve b). Thus, the mean population size decreases despite
the fact that the carrying capacity, and with it the maximal
population size in a time series, becomes larger for higher l.
For the parameter values examined in Fig. 4 autocorrelation

in the resident time series is low, and crashes in the AD
population are the main factor facilitating invasion of TFT.
The progressive skewness and asymmetry of the invariant
measure toward low population sizes ref lects the fact that
these crashes become more severe and more frequent for
higher l. Therefore, invasion success of TFT increases (Fig.
4, curve c). Fig. 4, which shows the effect of varying the
parameter l, together with Fig. 3, showing the effect of
varying the parameter b, reveal two major correlates of the
probability for stochastic transitions between the evolution-
ary equilibria corresponding to AD and TFT in our model:
the skewness of the invariant measure toward low population
sizes and the color of the power spectrum, which is a measure
for the amount of autocorrelation in the resident time series.
If different genetic equilibria correspond to different

population dynamic attractors, there can be an asymmetry in
the probability of transition between these equilibria be-
cause the ecological attractors might inf luence stochastic
effects differently. In fact, such an asymmetry occurs in our
model because the growth rate in TFT populations is higher
than in AD populations. In TFT populations, crashes still
occur, and the invariant measure might still be skewed to low
population sizes so that back invasions of AD are possible.
However, with high growth rates, long periods of low pop-
ulation number are very rare, so that high autocorrelation
leading to invasion by genetic drift is typically absent in TFT
populations.
For many species showing altruistic behavior, it is as easy to

imagine that they exhibited dynamics similar to that shown in
Fig. 1A as it is difficult to determine whether this was actually
the case, and hence whether chance events might have played
a major role in the evolution of the cooperative behavior. For
example, it has been argued that bottleneck episodes played a
role in the evolution of egg trading in sea bass (1, 18). Another
example may be found in termites, for which it has been argued
that cyclical inbreeding played a role in the evolution of
sociality by kin selection (19, 20). Cyclical inbreeding occurs
because of local f luctuations in population size, which accord-
ing to the theory presented here can also promote evolutionary
change due to stochasticity. This example shows that in many
cases cooperation may have evolved due to the concerted
action of different factors such as kin selection and genetic
drift. Such factors often operate with sporadic low population
sizes, and we conclude by noting that the ecological dynamics
required for stochastic events to be important can be obtained
not only from the simple competition model used here but also
from many other ecological models such as predator–prey or
host–parasite models. Thus, in principle there are many eco-
logical scenarios that could have led to the evolution of
cooperative behavior by magnifying the effect of stochasticity
in demographic processes.

We thank an anonymous referee for helpful suggestions. This
research was supported by Schweizerischer Nationalfonds Grant
3100–43042.95 to M.D.

1. Axelrod, R. & Hamilton, W. D. (1981) Science 211, 1390–1396.
2. Axelrod, R. (1984) The Evolution of Cooperation (Basic Books,

New York).
3. Axelrod, R. (1980) J. Conflict Resolution 24, 379–403.
4. Trivers, R. (1971) Q. Rev. Biol. 46, 35–57.
5. Nowak, M. A. & Sigmund, K. (1992) Nature (London) 355,

250–253.
6. Nowak, M. A. & Sigmund, K. (1993) Nature (London) 364,

56–58.
7. Ferrière, R. & Michod, R. E. (1996) Am. Nat. 147, 692–717.
8. Bellows, T. S., Jr. (1981) J. Anim. Ecol. 50, 139–156.
9. May, R. M. (1976) Nature (London) 261, 459–467.
10. Wright, S. (1982) Annu. Rev. Genet. 16, 1–19.
11. Cohen, J. E. (1995) Nature (London) 378, 610–612.

FIG. 4. Carrying capacity, mean density, and invasion success as a
function of l for fixed a and b. The carrying capacity N* is defined by
F(N*) 5 1 in Eq. 5, and hence is given by N* 5 [ln(l)]1/bya. Even
though the carrying capacity increases with increasing l (curve a), the
mean density (calculated as the arithmetic mean of the densities that
the resident AD population attains in the course of 10,000 generations)
decreases as l and hence the complexity in the system increases (curve
b). The decrease in the mean population size reflects an increasing
asymmetry in the distribution of population sizes over time (i.e. in the
invariant measure), which is increasingly skewed to lower population
sizes, even though the maximal population size attained by the resident
in a particular time series increases as the carrying capacity increases
(data not shown). As a consequence of this asymmetry invasion success
of TFT increases with l (curve c). To calculate invasion success, we
used the same procedure as for Fig. 3 for fixed a 5 0.006 and b 5 2,
and for 43 equidistant values of l in the interval [3, 7.2]. The
boundaries of this interval were chosen such that the resident dynamics
are unstable, but such that the fluctuations in the system are not
unrealistically large. As l increases, the complexity and the fluctua-
tions in the system and hence the chance of a severe population crash
increase.

5170 Evolution: Doebeli et al. Proc. Natl. Acad. Sci. USA 94 (1997)



12. Blarer, A. & Doebeli, M. (1996) Nature (London) 380, 589–590.
13. White, A., Begon, M. & Bowers, R. G. (1996) Proc. R. Soc.

London B 263, 1731–1737.
14. Press, W. H., Flannery, B. P., Teukolski, S. A. & Vetterling,

W. T. (1990) Numerical Recipes in C (Cambridge Univ. Press,
Cambridge, U.K.).

15. Halley, J. M. (1996) Trends Ecol. Evol. 11, 33–37.
16. Ariño, A. & Pimm, S. L. (1995) Evol. Ecol. 9, 429–443.
17. Doebeli, M. (1995) J. Theor. Biol. 173, 377–387.
18. Fischer, E. (1980) Anim. Behav. 28, 620–633.
19. Myles, T. G. & Nutting, W. L. (1988) Q. Rev. Biol. 63, 1–23.
20. Hamilton, W. D. (1964) J. Theor. Biol. 7, 1–52.

Evolution: Doebeli et al. Proc. Natl. Acad. Sci. USA 94 (1997) 5171


