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Spatial evolutionary game theory:
Hawks and Doves revisited
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SUMMARY

We consider a spatial generalization of evolutionary game theory in which strategies are distributed over
a spatial array of sites. We assume that the strategy corresponding to a given site has local interactions
with the strategies sitting on neighbouring sites, and that the strategies change if neighbouring strategies
are doing better. After briefly setting the stage with a formal definition of spatial evolutionary game
theory, we consider the spatial extension of the Hawk-Dove game, and we show that the results are
qualitatively different from those obtained from classical evolutionary game theory. For example, the
proportion of Hawks in the population is in general lower in the spatial game than in the classical one.
We also consider spatial generalizations of the extensions of the Hawk-Dove game obtained by including
strategies such as Retaliator and Bully. Here, too, the results from the spatial game are very different from
the classical results. In particular, with space Retaliator is a much more successful strategy than one would
expect from classical considerations. This suggests that, in general, spatial structure may facilitate the
evolution of strategies such as Retaliator, which do not necessarily prosper classically, and which are
reminiscent of the ‘nice’, ‘provokable’ and ‘forgiving’ strategies which seem to play a central role in the
evolution of cooperation. The results indicate that including spatial structure in evolutionary game theory

is a fruitful extension.

1. INTRODUCTION

Since the introduction of game theory concepts into
biology by Maynard Smith & Price (1973), evol-
utionary game theory has developed into an important
method for studying phenotypic evolution in situations
when the fitness of particular phenotypes depends on
their frequencies in the population (see Maynard
Smith 1982). The central concept in evolutionary
game theory is that of an evolutionary stable strategy
(Ess). An Ess is a strategy such that, if almost all
members of a population adopt it, then no mutant
strategy can invade the population under the influence
of natural selection. The Ess’s (if there are any) are
equilibrium states and evolutionary game theory
attempts to study these equilibria. The ideas and
methods of evolutionary game theory have been
applied in a wide range of situations, including animal
contests (Maynard Smith 1974 ; Maynard Smith 1982),
the origin of anisogamy (Parker et al. 1972), the
problem of sex allocation (Charnov 1982), animal
dispersal in a uniform environment (Hamilton & May
1977), plant growth and reproduction (Mirmirani &
Oster 1978), and the evolution of cooperation (Axelrod
& Hamilton 1981; Axelrod 1984; Nowak & Sigmund
1993).

In this paper we shall consider evolutionary games
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from a somewhat different perspective to that which is
adopted in the classical work (as presented, for
instance, in Maynard Smith 1982). This perspective
has been first taken up by Nowak & May (1992, 1993)
and involves studying evolutionary games in which
strategies are distributed over some spatial region and
have local interactions with strategies in neighbouring
regions. The strategy at one particular location changes
if neighbouring strategies are doing better. This
corresponds to an evolutionary scenario in which
successful phenotypes replace unsuccessful ones. In the
spatial game, the analogue of the frequencies with
which different strategies are adopted at an Ess is the
proportions of the different strategies present at the
spatial equilibrium distribution, or, if the spatial
distribution is continually changing (as is often to be
expected), the average proportion of the different
strategies. If the fluctuations in the proportions are not
too large, considering this average allows one to
compare the outcome of spatial evolutionary games
with the results of the classical Ess analysis.

The prototype of this kind of spatial extension of
evolutionary game theory is the spatial Prisoner’s
Dilemma introduced by Nowak & May (1992) (see
also Nowak & May 1993; Nowak et al. 1994aq, b).
Below we will first give a somewhat formal definition of
a spatial evolutionary game to set up a general
framework. We will then focus on one particular game
and analyse the spatial generalization of the well-

© 1996 The Royal Society
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known Hawk-Dove game (Maynard Smith 1982) and
some of its extensions. We show that the results from
the spatial Hawk-Dove game are qualitatively dif-
ferent from the classical results. Together with the
pioneering work of Nowak & May (1992, 1993) and of
Nowak et al. (19944, b), this suggests that the com-
bination of spatial structures and evolutionary games
may prove to be very fruitful: space literally adds a
new dimension to evolutionary game theory.

2. SPATIAL EVOLUTIONARY GAMES:
HAWKS AND DOVES

In this section we shall study the spatial Hawk-Dove
game and discuss how the results from the spatial
theory differ from the results of the classical Hawk—
Dove game. However, we first give a precise general
definition of spatial evolutionary game theory.

We consider a game allowing a finite number of
strategies. The set of strategies will be denoted by 2.
Let E(i,j) be the payoff to an individual adopting
strategy (€2 against an opponent adopting strategy
je2. Now let us introduce a finite number of cells
arranged in a lattice 4, which will represent space. In
principle, the lattice 4 may be of any dimension, but
the cases of biological interest are dimensions one, two
or three. The cells in A are labelled by an index 7, and
at any point in time, each cell is occupied by a strategy
from the strategy set X. Given any cell [ the set of
neighbouring cells to I (but not including 7 itself) is
denoted by N(I), and N*(I) = N(I) U I will denote
the set of neighbouring cells to / together with 7 itself.
For a given lattice 4 the choice of the neighbourhood
N(I) is arbitrary and the final theory depends on this
choice. However, there are usually a small number of
natural choices for a minimal neighbourhood N(7).

A spatial evolutionary game is defined by an
association, at generation ¢, of a strategy o,(/) €2 to
each cell /e 4, together with a dynamical process, that
is, a rule which determines the association of a strategy
to each cell of 4 at generation ¢+ 1. Given an initial
configuration of strategies o, (/), for all /€ A, this yields
a recursive definition of the spatial evolutionary game
once the dynamical process is specified.

The dynamical process is defined as follows. First the
total score s,(7) of cell I at generation ¢ is defined to be
the sum of the payoffs resulting from playing all the
neighbouring cells, i.e. all the cells in N(/):

X E(o (D), 0,(J)).

JeN(I)

s(l) =

Using the scores 5, we can define the dynamical process
which associates a strategy to each cell of A4 at
generation ¢+ 1. For any /e A let (e 2 be the strategy
associated, at generation ¢, to the cell Je N*(I) which
has maximal score s5,(J). Then we set o,,,(/) = {; that
is, the strategy at site / in generation ¢+ 1 is that
strategy from among the neighbours of 7 and 7 itself
which gets the highest score in generation ¢.

The dynamical process is well-defined either if the
cell in N*(/) with maximal score is unique or if all the
cells in N*(I) with maximal score have the same
strategy associated to them. In general, however,
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Table 1. Pay-offs in the Hawk—Dove game

H D

H 1—8
D 0

neither of these will hold and in such cases it is
necessary to introduce a tie-breaking mechanism to
complete the description of the dynamics. One can in
general choose to break any ties in either a deterministic
or a stochastic fashion. In the former case the complete
dynamic process is deterministic, whereas in the latter
it has a stochastic element.

It is possible to give a slight variant of the above
definition of spatial evolutionary game theory in which
self-interactions at each site are included. The ap-
propriate modification of the above definition is simply
that the total score s,(/) of cell /is now defined by a
sum over all cells J€ N*(I), rather than over Je N([).
Whether it is natural to include self-interactions in the
theory depends on the biological assumptions under-
lying the model. In general, if each cell is viewed as
being occupied by a single individual adopting a given
strategy then it is natural to exclude self-interaction.
However, if each cell is viewed as being occupied by a
population, all of whose members are adopting a given
strategy, then it may be more natural to include self-
interaction.

We now make some remarks concerning the defi-
nition of spatial evolutionary game theory. First we
note that for any game (that is, for any strategy set 2
and payoff matrix £) together with a spatial lattice 4
and a choice of local neighbourhood N(7), for all /€ A,
the corresponding spatial evolutionary game theory, as
defined above, is a finite cellular automaton (Wolfram
1984, 1986). (Note, however, that as the score of the
neighbours of a cell in turn depends on their
neighbours, the actual neighbourhood involved in
determining the new state of a cell is larger than in the
simplest automata, in which the new state only depends
on the nearest neighbours. For example, on a square
lattice with N(/) consisting of the eight cells sur-
rounding /, the neighbourhood needed to obtain the
new state of cell 7 is the 5 x 5-block surrounding 1.)
Second, the above definition required a choice of local
spatial neighbourhood N(7) to be made. In general, for
any given lattice, there are a small number of natural
choices for N(I). For example, if A is the two-
dimensional square lattice then natural choices for
N(I) are the eight cells which surround cell 7 and the
four cells which lie to the left and right and to the top
and bottom of cell /. As the lattice A4 is finite it is
necessary to specify boundary conditions to define N(/)
when [ is close to the boundaries of 4. The most
natural boundary conditions depend on the geometry
of A. If 4 is the two-dimensional square lattice, for
example, then the two natural choices are fixed
boundary conditions, for which marginal cells have no
neighbours on the outside of /4, and periodic boundary
conditions, for which the neighbours of marginal cells
are the corresponding cells at the opposite margin of
the lattice 4.
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Figure 1. The results of a simulation of the spatial Hawk-Dove game on a 40 x 40 lattice with periodic boundary
conditions and deterministic tie breaking at a value of # = 2.2. (If the neighbouring strategies with equal maximal
scores are different, then the site remains unchanged.) Figure 1 (@) is the initial configuration with 80 %, Doves (white
squares) chosen uniformly randomly, and (), (¢) and (d) show the system after 14, 63 and 166 iterations, respectively.
The self-organizing nature of the system is apparent in these pictures: the spatial distribution of Hawks (black
squares) varies from compact arrangements as in (b) and (d) to more elongated and disconnected structures as in (c).
(e) Ilustrates the sensitive dependence of the dynamics on the initial conditions. It shows the configuration obtained
after the same number of generations as (¢), starting from an initial condition which is identical to (a) with the
exception that the top leftmost cell is changed from a Dove to a Hawk. The complete lack of similarity between (c)
and (¢) is a consequence of spatial chaos. (f) Demonstrates the sensitivity of the spatial game to a change in . Starting
from (a) with f# = 2.25, (f) shows the result after the same number of generations as in (¢) and (¢). The difference
between (¢) and (f) results from the sensitive dependence of the theory on .
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proportion of Hawks (k)

Spatial Hawk—Dove games

0.8 1.8

2.8 3.8
B

Figure 2. Variation of the proportion of Hawks £ as a function of £. For 200 equidistant values of £ in the range
0.8 < f < 4 the dynamics of the system are followed for 175 generations, starting from a random uniform initial
configuration with equal proportions of Hawks and Doves. To remove transient effects, only the A-values of the last
25 generations are plotted for each . The different phases of 4-values together with the phase transitions between
them are apparent in this diagram, as is the qualitative difference between the spatial and the classical theory. The
calculations were done on a 70 x 70 lattice with periodic boundary conditions and stochastic tie breaking. Dots =

spatial game; squares = classical game.

It is worth remarking that although we assumed
above that the game involved only a finite number of
strategies, our definition of spatial evolutionary game
theory applies equally well to cases in which the game
has an infinite number of strategies.

Finally, we also note that if we take the game under
consideration to be the classical Prisoners’ Dilemma
(Axelrod 1984) then the corresponding spatial theory
which follows from our general definition is the spatial
dilemma of Nowak & May (1992).

Now that we have given the general definition of a
spatial evolutionary game we turn to consider one of
the simplest such games: the spatial Hawk—Dove
game. The possibility of studying the Hawk-Dove
game in such a spatial context was alluded to by
Nowak & May (1992) (cf. also Nowak & May 1993).
We first recall that in the classical Hawk—Dove game
(see Maynard Smith (1982) for a detailed account) it
is assumed that during a contest an individual can
behave in one of three ways, ‘display’, ‘escalate’, and
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‘retreat’. It is further assumed in the Hawk-Dove
game that individuals in a given contest can adopt one
of two strategies: ‘Hawk’ and ‘Dove’. These strategies
are defined as follows. Hawk (H): escalate and
continue until injured or until opponent retreats. Dove
(D): display, retreat at once if the opponent escalates.
Under these assumptions we may write the payoff
matrix for the Hawk-Dove game in the form shown in
table 1. The entries in this matrix are the payoffs to the
individuals adopting the strategy on the left if his
opponent adopts the strategy above. The parameter f
in the payoff matrix represents the cost incurred by an
individual who adopts the strategy Hawk against a
Hawk opponent.

The solutions of the classical Hawk—Dove game are
well known (Maynard Smith 1982). If # < | then H is
the only ess. If # > 1 then neither A nor D is an Ess;
however it is easy to show that in this case the only Ess
is the mixed strategy: ‘play H with probability p and
D with probability 1 —p’, where p = 1/£. This mixed
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Figure 3. Same as figure 2, but with a 59, error in updating each cell. Here the phase structure and the form of the
phase transitions is even more striking than in figure 2. For f-values larger than ~ 3 the proportion of Hawks present
in the spatial game is very much lower than in the classical theory. Dots = spatial game with noise; squares = classical

game.

strategy corresponds to a stable polymorphism con-
sisting of a population of H and D in frequencies p and
1 —p, respectively.

Let us now consider the spatial Hawk-Dove game.
We take the set of strategies and the payoff matrix to
be as in the classical theory described above. The
lattice 4 will be taken to be the n X n two-dimensional
square lattice, and the local neighbourhood N(7) of a
cell JeA will be taken to be the eight cells which
surround I. We will work with periodic boundary
conditions. However, the results are qualitatively
unchanged if we use fixed boundary conditions instead.
These choices, together with the general definition of
spatial evolutionary game theory given at the be-
ginning of the section, define the spatial Hawk—Dove
game that we shall study.

In general we found that if § <1 then any initial
configuration of Hawks and Doves becomes after a
finite number of iterations all Hawks. Thus if # < 1 the
results from the classical and from the spatial Hawk—
Dove game are identical. Similarly, if § is very large
then any initial configuration of Hawks and Doves

Proc. R. Soc. Lond. B (1996)

becomes essentially all Doves. However, for inter-
mediate values of £ > 1, the classical and spatial
theories differ substantially. For these p-values we
obtain a wide variety of dynamical behaviour ranging
from limit points to limit cycles and to very complicated
behaviour. An example of the complex spatial dy-
namics is shown in figure 1. In this region of f-values
the dynamical behaviour of the system exhibits extreme
sensitivity to the initial conditions (figure 1(e)). In
addition, the discrete nature of the local updating rules
implies that the dynamical time-development of the
system will be unaltered if f is varied in a range whose
magnitude is below a certain threshold. This threshold
depends on the size of the lattice, but in general, it is
surprisingly low (figure 1 (f')), which again reflects the
delicate effects of spatial structure.

Perhaps the most important quantity associated to
the spatial Hawk-Dove game is the proportion 4 of
Hawks in the total population in each generation.
Figure 2 shows the dynamics of # for a range of f-
values. One conclusion emerging from figure 2 is that
the proportion of Hawks in the spatial game is in
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general lower than expected from the classical results.
Moreover, instead of roughly following the hyperbolic
curve 1/f as f is varied, the proportion of Hawks
undergoes what might be called ‘phase transitions’.
Initially, when £ just passes the threshold value 1, there
is a small region of f-values for which no Doves
survive, contrary to the classical theory. For values of
f > 9/7, there is a first transition: instead of gradually
decreasing as in the classical case, the proportion of
Hawks drops suddenly and fluctuates around a mean
that stays roughly constant as £ is further increased. At
f =5/3, there is another sudden drop in the average
proportion of Hawks, which rises again significantly at
f =2. Thus, as f is varied the spatial structure can
lead to abrupt qualitative changes in the outcome of
the Hawk—Dove interactions. In general, these tran-
sitions are associated with the success or failure of
certain geometrical structures of Hawks or Doves to
grow on the lattice. For example, the point at which a
single Dove is able to grow in a sea of Hawks occurs at
f =9/7, which corresponds to the first transition. The
second transition at f = 5/3 corresponds to the value
of f# at which a square of four Hawks is no longer able
to grow in a sea of Doves, and the third transition
occurs at f = 2, when a square of four Hawks can be
invaded by a Dove. Similar observations hold for the
transitions at larger f-values. As the cost of Hawk—
Hawk contests becomes large, the dynamics of the
Hawk proportion £ become cyclic (figure 2). This is
because of the appearance of ‘blinkers’: single Hawks
surrounded by Doves are doing well, so that in the next
generation there appears a cluster of nine Hawks,
which reduces to a single Hawk again in the following
generation because of the large cost f.

It has recently been observed that results from the
spatial prisoner’s dilemma (Nowak & May 1992) may
change qualitatively if some stochasticity in the
updating rule is introduced (Mukherij et al. 1995).
Here we do not refer to the stochasticity used to break
ties, but rather to the chance of a cell failing to adopt
neighbouring strategies even if they are doing better.
Figure 3 shows the results from simulations in which
every cell has a 59, chance of failing to update
correctly. Interestingly, with stochasticity a second
phase transition occurs at f = 3: the cyclic behaviour
of the ‘blinkers’ for large f disappears when stochas-
ticity is introduced. This is because the existence of the
‘blinkers’ depends on an exact symmetry in the
updating rules which is broken by the introduction of
stochasticity. With stochasticity it is still true that the
proportion of hawks in the population is in general
considerably lower than expected from the classical
results. The difference is particularly pronounced for
larger S after the second phase transition.

3. RETALIATION AND BULLYING

The classical Hawk-Dove game has two interesting
extensions obtained by adding two further strategies:
Retaliator (R) and Bully (8) (Maynard Smith 1982).
These strategies are defined as follows. Retaliator: start
by displaying, but escalate if opponent escalates;

Proc. R. Soc. Lond. B (1996)
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Table 2. Pay-offs in the three-strategy game

H D R
H 1-p 2 1—f+e¢
D 0 1 1—¢

1—f—e l+e 1

Bully: start by escalating, but retreat if opponent
escalates. In this section we consider both the spatial
Hawk—Dove—Retaliator game and the spatial Hawk-
Dove—Retaliator-Bully game.

We start by considering the H-D—-R game. The
payoff’ matrix for this three-strategy game may be
written in the form shown in table 2. The parameter
¢ = O was introduced by Zeeman (1981) to allow for the
fact that in a Retaliator versus Dove contest, the
Retaliator may discover that its opponent will never
escalate, and may exploit this advantage. Similarly, in
a Hawk versus Retaliator contest the Hawk may have
the advantage of escalating first. The case of € = 0 is
the original model proposed by Maynard Smith &
Price (1973). Here we shall consider the spatial /~D-R
game for both € =0 and ¢ > 0.

First let us recall the solutions of the classical H/-D—-R
game (Zeeman 1981; Maynard Smith 1982). Fore = 0
the only Ess is a polymorphism of Hawk and Dove.
However, for ¢ > 0 there are two alternative Ess’s: pure
Retaliator and a Hawk-Dove polymorphism.

The ‘solutions’ of the spatial H-D-R game are
qualitatively different from the classical solutions. For
¢ > 0 only Retaliators survive. Thus the Hawk-Dove
polymorphism vanishes in the game with spatial
structure. For ¢ =0 the final configuration in the
spatial game is essentially a Retaliator-Dove poly-
morphism, which is again very different from the
classically expected Hawk-Dove polymorphism. The
results shown in figure 4 in a plot of the proportions of
the various strategies as a function of § are at first sight
counterintuitive: for large f, that is, high costs of
Hawk-Hawk encounters, there are actually a few
Hawks surviving in the population. As the cost
decreases, all Hawks die, and the proportion of
Retaliators increases. These results have the following
explanation. A small f favours the Retaliators, which
increase in frequency and drive the Hawks to ex-
tinction. As [ increases, the advantage of the Re-
taliators decreases: eventually, the proportion of Doves
is large enough to allow a few Hawks to survive.
Because at most a few Hawks survive, the dynamics in
the spatial H-D—R game are simpler than those in the
spatial H-D game. As a consequence, updating errors
do not have the strong effects apparent from figure 3
for the H-D game, and the results of figure 4 remain
virtually unchanged if updating errors are introduced
in the spatial //~D—-R game.

We end this section by briefly turning to the spatial
H-D—R-B game. The payoff matrix of the classical
four-strategy game may be written in the form shown
in table 3. The results of the classical H—D—-R-B game
are as follows (Zeeman 1981, Maynard Smith 1982). If
¢ =0 then no Ess exists. Instead the system cycles
indefinitely R->H-D polymorphism—H-B poly-
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Figure 4. The proportions of Hawks (squares), Doves (plusses) and Retaliators (crosses) in the spatial H—-D—R game
with € = 0. Starting from uniform random configurations with equal proportions of H, D and R, the proportion

of H, D and R in ten generations after a transient of 150

generations was plotted for 200 f-values in the range

0.4 < B < 3.6. Because at most a very small proportion of Hawks survive, these games have simpler dynamics than

the game without Retaliators. Hawks can only survive if the

cost of a Hawk—Hawk contest is relatively high (but not

if it is too high), because only then are there enough Doves to support them. As £ decreases, the Hawks vanish,

while the proportion of R increases. The calculations were
ditions and stochastic tie breaking.

Table 3. Pay-offs in the four-strategy game

H D R B
H 1-p 2 1—p+e 2
D 0 1 l—e 0
R 1—p—e l+e 1 2
B 0 2 0 1

morphism — R. However, if ¢ > 0 there are two Ess’s,
pure Retaliator and a Hawk-Bully polymorphism.
The results of the spatial H/—-D-R-B game are again
qualitatively different from the classical theory. For
€ > 0 the solution of the spatial game consists of pure
Retaliators, and the same is true for € = 0, except if
£ > 1, in which case there may be (depending on initial
conditions) a few Doves present among the Retaliators.
Thus all the classical polymorphisms disappear with

Proc. R. Soc. Lond. B (1996)

done on a 70 x 70 lattice with periodic boundary con-

space, and Retaliator is by far the most successful
strategy.

4. DISCUSSION

In this paper we have sought to bring together two
conventionally disparate aspects of modelling in evol-
utionary biology. The first of these aspects is the
classical concept of an evolutionary game and the
second is the idea of spatial dependence in a biological
system. One possible route to a spatial generalization of
evolutionary game theory is to associate a population
of strategies to each cell of a spatial lattice and then to
generalize the dynamics of classical evolutionary game
theory in each cell by the addition of migration from
the cell to its neighbours. This approach, which results
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proportion of Hawks (/)
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0.8 1.8

2.8 3.8
B

Figure 5. Same as figure 2, however after each updating the Hawks and Doves are randomly redistributed over the
lattice. This procedure, which corresponds biologically to dispersal, results in dynamics which approximately lie on
a two-cycle. It is clear that with this randomization Hawks are much more successful than in either the unrandomized
spatial game or the classical game. Dots = spatial game; squares = classical game.

in a dynamical system of reaction—diffusion type, has
been investigated by Brown & Hansell (1987) and by
Durrett & Levin (1994).

Here we have chosen a quite different route to a
spatial extension of classical evolutionary game theory.
In our approach, which is modelled on the spatial
dilemma’s of Nowak & May (1992, 1993), a spatial
extension of any evolutionary game is defined by
associating a single strategy to each cell of the spatial
lattice and giving a local rule for updating cells. The
spatial generalization of an evolutionary game ob-
tained in this way, which is defined in general in §2, is
a finite cellular automaton. Such systems often display
complex self-organizing behaviour (Wolfram 1984,
1986). As a consequence, spatial evolutionary game
theory can be expected in general to have qualitatively
different behaviour from the corresponding classical
theory. Such a difference is apparent in the spatial
Hawk—Dove game discussed in this paper. The spatial
structure results in a series of polymorphic phases (with
the proportions of Hawk and Dove approximately
constant in each phase) with sudden phase transitions
occurring at certain values of the cost of Hawk-Hawk

Proc. R. Soc. Lond. B (1996)

encounters. In addition, in the spatial theory the
proportion of Hawks is smaller for most parameter
values than would be expected from the classical
theory.

It is interesting to note that the various phases seem
to correspond to the different classes of complexity of
cellular automata proposed by Wolfram (1986). Thus,
in the region 1 < f# < 9/7, the system exhibits a limit
point and therefore belongs to Wolfram’s class I of
cellular automata. For 5/3 < f# < 2, as well as for large
p, the system exhibits limit cycles and belong to
Wolfram’s class II of cellular automata. For 9/7 < f <
5/3, aperiodic behaviour occurs which appears to be
chaotic and of the same type as that of cellular
automata in Wolfram’s class I1I. Finally, for 2 < g <
2.35, the system seems to belong to Wolfram’s class IV,
which consists of cellular automata with extremely
long transients. Such automata have been conjectured
by Wolfram (1986) to support universal computation.
For £ in this range we find extremely long transients
before the system relaxes to a simple cycle. This
behaviour is typical of the critical slowing-down which
has been identified by Langton (1990) as character-
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izing class IV automata. In addition, the length of the
transients increases very rapidly as the size of the lattice
is increased, which is again typical of the behaviour
found by Langton (1990) as identifying class IV
systems.

The qualitative differences between the spatial
theory and the classical theory are even more pro-
nounced when the Hawk—Dove game is extended by
the addition of the strategies Retaliator and Bully. As
discussed in §3, either only Retaliators (for € > 0) or
Retaliators and Doves (for € = 0) survive in the spatial
Hawk—Dove—Retaliator game. Both of these outcomes
are very different from the classical game, where one
always has a Hawk-Dove polymorphism as evol-
utionary stable strategy, together with a pure Re-
taliator Ess for € > 0. In particular, Retaliator does
considerably better in the spatial game than in the
classical case.

The fact that Hawk does worse in the spatial game
than in the classical game is a general consequence of
spatial pattern formation. This can be made clear by
considering randomized spatial games, in which after
each round of updating, the strategies are randomly
distributed over the lattice according to their overall
frequencies. If this is done, Hawks do better, on
average, than in the classical game (figure 5). This is
because randomization produces smaller and more
irregular clusters of Hawks, so that in one generation
most Hawks have at least one Hawk as a neighbour
that is surrounded by Doves, which in turn produces
lots of Hawks in the subsequent generation. Conse-
quently, the dynamics have an approximate two-cycle
(figure 5). If we apply the same randomization
procedure to the three strategy game, Retaliator almost
always dies out. Biologically, randomizing corresponds
to dispersal, so that these results suggest that thorough
mixing of the population through dispersal increases
the success of aggressive strategies such as Hawk.

Returning to the case of unrandomized spatial
games, the success of Retaliator is even clearer when
one considers the spatial Hawk-Dove-Retaliator—
Bully game. In this case the final state of the spatial
theory is always almost pure Retaliator, with occasion-
ally some Doves present. In contrast, all the other
strategies may survive in the classical theory. The
efficiency of retaliation as a strategy in spatial
evolutionary game theory is interesting given that the
phenomenon of retaliation may help to explain the
prevalence of ritualized behaviour in animal contests
(c.f. Maynard Smith & Price 1973). The greater
success of Retaliator in spatial evolutionary games
than in the classical case illustrates the fundamental
fact that spatial structure may allow a strategy to
prosper when one would not expect this to occur on the
basis of classical evolutionary game theory con-
siderations. The analogous result for the Prisoner’s
Dilemma, that cooperators survive in the spatial
theory, was the central observation made by Nowak &
May (1992).

The strategy Retaliator is reminiscent of the ‘nice’,
‘provokable’ and ‘forgiving’ strategies (such as Tit for
Tat) which appear to play a crucial role in the
evolution of cooperation (Axelrod 1984; Nowak &
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Sigmund 1993). It is tempting to speculate, therefore,
that spatial evolutionary game theory favours such
strategies. If this is so it suggests that, in general,
cooperation maybe more likely to occur in the presence
of spatial structure. Indeed, studies of spatial versions
of the iterated Prisoner’s Dilemma seem to support this
view (see, for example, Axelrod 1984).

Our formal definition of spatial evolutionary game
thoery given in §2 works equally well if the regular
lattice A is replaced by a ‘random’ lattice, in which the
number of neighbours differs from site to site. This
much more general structure may be biologically more
realistic, and may also be of considerable mathematical
interest. It will be interesting to study the outcomes of
evolutionary games defined on these more general
spatial structures. Some results in this direction have
been obtained by Nowak et al. (19944, b), who argue
that, for the Prisoner’s Dilemma, more general spatial
structures again result in interesting spatial games.

A second interesting generalization of the work
described here is to study the spatial Hawk—Dove game
(and its extensions) in a continuous time formalism as
opposed to the discrete time framework adopted here.
Continuous time (which is appropriate in many
biological situations) corresponds to the lattice cells
being updated one by one in an asynchronous fashion
rather than in the synchronous manner that corres-
ponds to discrete time. The spatial Prisoner’s Dilemma
has been investigated in continuous time by Huberman
& Glance (1993) and by Nowak et al. (19944, b). In
conclusion, in view of the results of Nowak & May
(1992) and of the results presented here, we believe
that the generalization of evolutionary game theory to
spatially extended systems can lead to qualitatively
new results that may shed light on unsolved problems.

We thank an anonymous reviewer for very helpful comments
and suggestions. This research was partly supported by
Schweizerischer Nationalfonds (grant 3100-43042.95 to
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