
Problem Set #7: Answer Key
Practice problems for population genetics (and some continuous time ecology)

(1) (a) Prove: p = D + 1
2H

D = NAA

N ; H = NAa

N ; and R = Naa

N by de…nition of D; H; and R:
The total number of alleles in the population is 2N and the number of A alleles
contained in an AA genotype is 2 and the number in an Aa heterozygote is 1:
If p is the fraction of A alleles in the population, then p is the average number
of A alleles over all genotypes or,

p = 2NAA+NAa

2N = NAA

N + 1
2

NAa

N = D + 1
2H:

Prove: q = R + 1
2H

By a similar argument,
q = 2Naa+NAa

2N = Naa

N + 1
2

NAa

N = R + 1
2H:

(b) Prove: p2 + 2pq + q2 = 1
q = 1 ¡ p by de…nition
p2+2pq+q2 = p2+2p(1¡p)+(1¡p)2 = p2+2p¡2p2+1¡2p+p2 = 1

(c) Random mating, large population size, Mendelian segregation and
no mutation.

(2) The value of pt for some time t is the square root of the frequency of
individuals homozygous for that particular allele. Thus, if Dt = p2

t = p2
0 for

all t, then pt = p0 for all t. Since qt = 1 ¡ pt, then it follows that qt = q0 for
all t: Assuming random mating then the frequency of heterozygotes will be
2ptqt = 2p0q0 for all t > 0.

(3) The nonzero equilibrium for a locus with heterozygote advantage is p̂ =
t

t + s
, where the relative …tnesses of the three genotypes are AA : 1 ¡ s; Aa : 1

and aa : 1 ¡ t: So, for this problem the equilibrium frequency is p̂ = 0:5
0:25+0:5 =

0:67:

(4) (a) The frequency of p in the next generation after selection is given by

p
0
sel =

wAAp2 + wAap(1 ¡ p)

wAAp2 + wAa2p(1 ¡ p) + waa(1 ¡ p)2

=
wAAp + wAa(1 ¡ p)

wAAp2 + wAa2p(1 ¡ p) + waa(1 ¡ p)2
p:

The change in p from one generation to the next due to selection
is p

0
sel ¡ p or,

wAAp + wAa(1 ¡ p)

wAAp2 + wAa2p(1 ¡ p) + waa(1 ¡ p)2
p ¡ p:

(b) For p very small, p2 ¼ 0; and (1 ¡ p) ¼ 1: Thus, the equation
wAAp2 + wAa2p(1 ¡ p) + waa(1 ¡ p)2 is approximately equal to

2wAap+waa: If we further assume that 2wAap << waa because p is very small,
then 2wAap + waa ¼ waa = 1 (by de…nition of waa).
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(c) If wAAp2+wAa2p(1¡p)+waa(1¡p)2 ¼ 1, wAAp ¼ 0 and wAa(1¡p) ¼
wAa, then

¢psel =
wAAp + wAa(1 ¡ p)

wAAp2 + wAa2p(1 ¡ p) + waa(1 ¡ p)2
p ¡ p

¼ wAa

1
p ¡ p

= (1 ¡ s)p ¡ p = ¡sp
(d) In this problem there is one-way mutation from a¡ > A at rate À.

Another way to interpret À is that it is the fraction of a alleles that mutate to
A per generation. If the fraction of a alleles in the population is 1¡p, then the
total fraction of alleles that mutate from a to A is À(1 ¡ p): Thus the change
in p due to mutation (¢pmut) is À(1 ¡ p):

(e) If p is approximately 0, then 1 ¡ p ¼ 1. Thus, À(1 ¡ p) ¼ À:
(f) Since ¢p = ¢psel + ¢pmut, and ¢psel ¼ ¡sp and ¢pmut ¼ À (from

4c and 4d, respectively) then ¢p = ¡sp + À.
(g) The equilibrium is now easy to solve if we remember that at equi-

librium ¢p = 0.
¢p = 0 = ¡sp¤ + À

p¤ =
À

s
:

Therefore, in the case when a deleterious allele is dominant, the
equilibrium frequency is

À

s
, under a mutation-selection balance.

(5) In contrast to problem 4, in this problem the deleterious allele is recessive.
(a) The change in p due to selection has the same form as 4a, except

now the terms wAA, wAa and waa are 1 ¡ s, 1, and 1, respectively since the
allele A is recessive. Therefore, the equation for ¢psel is

¢psel =
wAAp + wAa(1 ¡ p)

wAAp2 + wAa2p(1 ¡ p) + waa(1 ¡ p)2
p ¡ p:

Substituting the values of wAA, wAa and waa into the equation for
¢psel results in the equation,

¢psel =
(1 ¡ s)p + (1 ¡ p)

(1 ¡ s)p2 + 2p(1 ¡ p) + (1 ¡ p)2
p ¡ p:

Expanding terms results in the equation,

¢psel =
¡sp + 1

¡sp2 + 1
p ¡ p:

Since p is very small, p2 ¼ 0; and the term ¡sp2 ¼ 0 which results
in the equation,

¢psel = (1 ¡ sp)p ¡ p:
(b) Simpli…cation of ¢psel in 5a, yields ¢psel = (1 ¡ sp)p ¡ p = p ¡

sp2 ¡ p = ¡sp2. Since the change in p as a result of mutation is the same as
it was in 5d and 5e, ¢pmut = À. The overall change in p is a consequence of
selection and mutation or ¢p = ¢psel+ ¢pmut = ¡sp2 + À.

(c) At equilibrium ¢p = 0, in which if we solve for p¤ results in p¤ =r
À

s
. The main assumption is p is small enough to assume p2 = 0 in our

derivation.
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(6) Figure 1 provides a plot of the isoclines de…ned by the red and black
scorpion competition model. We see that based on graphical analysis of these
isoclines that the internal equilibrium is unstable. Therefore, if the scorpions
start at the population size con…guration indicated by the black dot in the
…gure, the Black scorpion will eventually reach its carrying capacity and the
Red scorpion will eventually go extinct.

(7) For stable coexistence, the conditions: K1 <
K2

®21
and K2 <

K1

®12
must be

met. If K2 = 100 and ®21 = 0:5, then K1 must be less than 100
0:5 = 200 according

to the …rst condition. According to the second condition, K1 > ®12K2, or
K1 > 1:5(100) = 150. Consequently for stable coexistence K1 must be between
151 and 199. For species 1 to outcompete species 2, its carrying capacity needs
to be greater than 200, based on the previous analysis.

(8) In …gure 2 is a plot of the 0-isoclines for two species experiencing com-
petition in which there is a stable internal equilibrium. By adding intraguild
predation, the N1 intercept for the 0-isocline of the prey (in this example species

2) is changed from a value of
K2

®12
to a value of

r2K2

±K2 + ®21r2
. Provided the

parameter ± is su¢ciently large then the new intercept will be less than K2

resulting in the 0-isoclines not crossing each other and the predator excluding
its prey.

(9) To analyze the model we …rst …nd the equilibrium population sizes and
then determine their stability. The equilibrium population sizes occur when
dN
dt = 0 :

rN¤(1 ¡ N¤

K
) ¡ cN¤

d + N¤ = 0

r(1¡ N¤

K
) =

c

d + N¤ obtained by bringing the term
cN¤

d + N¤ to the right

side and then dividing through by N¤

(1¡N¤

K
)(d+N¤) = c

r , by multiplying each side by (d+N¤) and dividing

each side by r

¡N¤2

K
+ (1 ¡ d

K
)N¤ + d ¡ c

r
= 0

The solutions to this equation are N¤ =
¡(1 ¡ d

K ) §
q

4
(d¡ c

r )

K + (1 ¡ d
K )2

¡2 1
K

:

Another solution that satis…es dN
dt = 0, is N¤ = 0: Thus, there are three

equilibrium population sizes, namely,

N¤ = f0;
¡(1 ¡ d

K ) +

q
4

(d¡ c
r )

K + (1 ¡ d
K )2

¡2 1
K

;
¡(1 ¡ d

k ) ¡
q

4
(d¡ c

r )

K + (1 ¡ d
K )2

¡2 1
K

g:

Next we would like to know which of these equilibrium population sizes
is stable and which is unstable. Clearly the equilibrium solutions are compli-
cated so graphical analysis may be a better approach than an analytical analysis.
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A graphical analysis shows that for properly chosen r; K, c and d, the plot of
dN
dt versus N looks like …gure 3, in which there are two equilibria with values
greater than or equal to zero in which the largest equilibrium population size is
stable. There is an internal equilibrium (…gure 4) for large values of c relative
to d and for r su¢ciently small. The internal equilibrium is unstable and lies
between the two stable ones (…gure 4). When c is too large dN

dt is always
negative resulting in the equilibrium N¤ = 0 being stable (…gure 5).

(10) For this problem we need to return to 8th grade algebra. If there
are 10x as many MN genotypes as NN genotypes and 2pq is the frequency
of MN genotypes and q2 is the frequency of NN genotypes, then 2pq = 10q2:
Remembering that p = 1 ¡ q, then the relation 2pq = 10q2 can be written as
2(1 ¡ q)q = 10q2, from which we need to solve for q.

2(1 ¡ q)q = 10q2

2q ¡ 2q2 = 10q2

12q2 = 2q
q = 1

6
(11) (a) If MN is at a frequency 0.42, then 2p(1 ¡ p) = 0:42; which is a

quadratic equation with two solutions, p = f0:3; 0:7g, so you can’t determine a
speci…c p from the information because there are two possible solutions.

(b) If you are provided information that p is the more common allele,
then p is the largest solution of p2 ¡ 2p + 0:42 = 0 which is p = 0:7.

(12) If one allele is dominant and you cannot assume that the population is
in Hardy-Weinberg equilibrium, then given only the observed phenotypes it is
impossible to estimate accurately allele frequencies by taking the square root of
the frequency of observed individuals with phenotype M because heterozygotes
are indistinguishable from homozygotes for the dominant allele.

(13) Let p be the frequency of the horn allele and assume genotype fre-
quencies are in Hardy-Weinberg equilibrium. Based on the laws of probability,
p2 + 2pq + q2 = 1. Or by rearranging terms: p2 + 2pq = 1 ¡ q2: Since the
horn allele is dominant in males, then both homozygous and heterozygous males
have horns and there frequency is equal to p2 + 2pq. By substituting 0:96 for
p2 + 2pq in the relation p2 + 2pq = 1 ¡ q2, it is possible to solve for q.

0:96 = 1 ¡ q2

q = 0:2
Since q = 0:2, then p = 0:8 and the frequency of females that have horns

is p2 = 0:64:

(14) (a) If the populations are of equal size then upon fusion of the two

populations the frequency of the a allele is
q1 + q2

2
: Given the new frequency of

the a allele, the frequency of aa individuals in the new population is
µ

q1 + q2

2

¶2

:

(b) If population 1 is four times larger then population 2, when the two
populations fuse, four out of every …ve alleles in the new population will have
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been from population 1, and the frequency of the a allele will be
4q1 + q2

5
: As

a result, the frequency of aa individuals in the new population is
µ

4q1 + q2

5

¶2

:

(15) At an overdominant locus we would expect a polymorphic equilibrium.
To solve this problem we need to determine the equation that de…nes the change
in the frequency of one of the alleles and then …nd the allele frequencies such
that the change is equal to zero. Let p be the frequency of the allele with a
…tness of 1 and q be the frequency of the other allele.

Let p0 be frequency p in the next generation after selection and repro-
duction:

p0 =
wA(t)

¹w(t)
; where wA(t) is the marginal …tness of allele A and ¹w(t)

is the mean …tness of the population. Based on the relative …tnesses of the
three genotypes, wA(t) = p+ q(1 +hs) and ¹w(t) = p2 +2pq(1 +hs) + q2(1 ¡ s).
Substituting these values into the equation for p0 yields,

p0 =
p + q(1 + hs)

p2 + 2pq + q2 + 2pqhs ¡ sq2
p =

p + q(1 + hs)

1 + sq(2ph ¡ q)
p:

Then ¢p = p0 ¡ p is equal to
p + q(1 + hs)

1 + sq(2ph ¡ q)
p ¡ p.

We seek the equilibrium values of p that satisfy ¢p = 0: Let p¤ be the
equilibrium values of p, and likewise q¤ are the equilibrium values of q.

p¤ + q¤(1 + hs)

1 + sq¤(2p¤h ¡ q¤)
p¤ ¡ p¤ = 0

p¤ + q¤(1 + hs)

1 + sq¤(2p¤h ¡ q¤)
p¤ = p¤

p¤ + q¤(1 + hs)

1 + sq¤(2p¤h ¡ q¤)
= 1, by dividing each side by p¤

p¤ + q¤(1 + hs) = 1 + sq(2p¤h ¡ q¤), by cross multiplication
p¤ + q¤ + q¤hs = 1 + 2p¤q¤hs ¡ sq¤2, by expansion of terms
1 + q¤hs = 1 + 2p¤q¤hs ¡ sq¤2, noting that p¤ + q¤ = 1
q¤hs = 2p¤q¤hs ¡ sq¤2

h = 2p¤h ¡ q¤

h = 2p¤h ¡ 1 + p¤, by substituting q¤ = 1 ¡ p¤

p¤ =
1 + h

1 + 2h
The other, more trivial equilibrium values for p are 0 and 1.

(16) (a) From lecture and problem 5, the mutation-selection equilibrium

frequency of a recessive deleterious allele is p¤ =

r
À

s
: If s = 1, then p¤ =

p
À,

and solving for À yields À = p¤2: Thus the necessary mutation rate is 0.0004 if
the incidence of cystic …brosis is 0.0004, i.e., the frequency of individuals with
cystic …brosis (p2) is 0.0004.
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(b) A mutation rate of 0.0004 per generation per locus is very high.
Normal mutation rates at single sites in coding regions of DNA is 10¡9; with
per locus rates about 10¡8¡10¡6. From problem 15, the equilibrium frequency

of the allele with a relative …tness of 1 ¡ s is q¤ = 1 ¡ p¤ =
h

1 + 2h
: If q¤2 =

0:0004, then q¤ = 0:02 =
h

1 + 2h
: Solving for h yields h = 0:021. So, an

alternative explanation for the frequency of cystic …brosis is that there is a
slight heterozygote advantage for having the ”cystic …brosis” allele.

(17) A way to solve this problem is to determine wAA; wAa; and waa such
that ¢psel = 0 for any p. The equation that describes the change in p after selec-

tion is ¢psel =
wA(t)

¹w(t)
p¡p: From this equation it is apparent that for ¢psel to be

equal to zero, then
wA(t)

¹w(t)
= 1: Since

wA(t)

¹w(t)
=

wAAp + wAa(1 ¡ p)

wAAp2 + 2wAap(1 ¡ p) + waa(1 ¡ p)2
,

then the numerator and denominator must be equal wAAp + wAa(1 ¡ p) =
wAAp2 + 2wAap(1 ¡ p) + waa(1 ¡ p)2. We can choose any wAA and wAa and
then simply solve for a waa that would satisfy the previous relation.

Let wAA = a and wAa = b; then waa satis…es
ap + b(1 ¡ p) = ap2 + 2bp(1 ¡ p) + waa(1 ¡ p)2

waa = ap+b(1¡p)¡ap2¡2bp(1¡p)
(1¡p)2 :

This would be an example of frequency dependent selection such that
the selective coe¢cient of aa individuals is a function of the frequency of the
alleles in the population.

(18) In this problem I will use the same techniques as was done in problem
15 to …nd the equilibrium and then perform a stability analysis by comparing
the …tness of the heterozygote with both homozygotes. For the …tnesses de…ned

in this problem, ¢p =
spq(q + h(p ¡ q))

1 ¡ sq(q + 2ph)
, where p measures the frequency of the

A0 allele. The polymorphic equilibrium solution is p¤ = h¡1
2h¡1 .

(a) For any 0 < h � 1, the polymorphic equilibrium for the allele A0

fails to exists because p¤ � 0.
(b) For h > 1, p¤ is positive, suggesting a polymorphic equilibrium ex-

ists. But for h > 1, the …tness of the heterozygote is less than both homozygotes,
which means that for h > 1; the polymorphic equilibrium is unstable.

(c) For h < 0, p¤ is positive, again suggesting a polymorphic equilibrium
exists. Also notice that for h < 0, the …tness of the heterozygote is greater than
either homozygote, which implies that the polymorphic equilibrium is stable
when h < 0.
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