
Problem Set #6: Continuous time population dynamics
Biomathematics, Spring 2001

1. (a) At equilibrium the population size is constant, thus,
dN

dt
(N¤) = 0.

dN

dt
(N¤) = rN¤[1 ¡ (N¤=K)µ] = 0

rN¤ ¡ rN¤
µ

N¤

K

¶µ

= 0

µ
N¤

K

¶µ

= 1

N¤ = K

Another value for N that satis…es
dN

dt
(N¤) = 0, is N¤ = 0.

To evaluate the equilibrium, let
dN

dt
= rN [1¡(N=K)µ] = F (N), and

determine whether
dF

dN
(N¤) is positive or negative. If

dF

dN
(N¤)

is positive this means that
dN

dt
(N¤) is an increasing function

at N¤: Remembering that at N¤,
dN

dt
(N¤) = 0, if

dF

dN
(N¤)

is positive then any small perturbation to the left is associated

with a negative
dN

dt
: Therefore any perturbation to the left of

N¤ will move away from the equilibrium. A similar argument

shows that if
dF

dN
(N¤) is positive any perturbation to the right

of N¤ will also move away from the equilibrium. If
dF

dN
(N¤)

is negative, the opposite dynamics will occur in that any small
perturbation will return to the equilibrium, whether to the right
or to the left.

Stability analysis of the equilibrium N¤ = K:

dF

dN
(N) = r ¡ r

µ
N

K

¶µ

¡ rµ

µ
N

K

¶µ

dF

dN
(N¤) = r ¡ r ¡ rµ = ¡rµ

Since both r and µ are positive
dF

dN
(N¤) is negative, and since

dF

dN
(N¤) is negative the equilibrium, N¤ = K; is stable.

Stability analysis of the equilibrium N¤ = 0:
dF

dN
(N¤) = r

Since r is positive, the equilibrium, N¤ = 0, is unstable.
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In …gure 1, for µ = 1 there is a linear decline in per capita growth
rate with population size. For µ < 1 the decline in growth
rate is more rapid for small population size but becomes less
as population size reaches the carrying capacity. For µ > 1 the
decline is less rapid for small population size but becomes greater
as population size reaches the carrying capacity.

2. A plot of
dN

dt
versus N is provided in …gure 2.

(a) At equilibrium,
dN

dt
= 0 = rN¤(N¤ ¡ a)(1 ¡ N¤=K).

The equation is already factored for us leaving
rN¤ = 0 =) N¤ = 0

N¤ ¡ a = 0 =) N¤ = a

(1 ¡ N¤=K) = 0 =) N¤ = K

Thus we have three equilibrium at N¤ = f0; a;Kg.

(b) As with problem #1, we set
dN

dt
= rN(N ¡ a)(1 ¡ N=K) = F (N),

and take the derivative of F (N) with respect to N . We then evaluate
the derivative at the equilibrium points.

dF (N)

dN
= r(N ¡ a)(1 ¡ N=K) + rN(1 ¡ N=K) ¡ rN(N ¡ a)

K
The equilibrium N¤ = 0:
dF (0)

dN
= r(¡a): Thus

dF (0)

dN
is always negative which means the

equilibrium, N¤ = 0, is stable.
The equilibrium N¤ = a:
dF (a)

dN
= r(a ¡ a)(1 ¡ a=K) + ra(1 ¡ a=K) ¡ rN(a ¡ a)

K
dF (a)

dN
= ra(1¡a=K): In this case,

dF (a)

dN
is always positive which

means the equilibrium is unstable.
The equilibrium N¤ = K:
dF (K)

dN
= r(K ¡ a)(1 ¡ K=K) + rK(1 ¡ K=K) ¡ rK(K ¡ a)

K
= ¡r(K ¡ a). Which is always negative for reasonable values of r;

K; and a. Therefore this equilibrium is stable.

(c) In …gure 3 we see that the per capita growth rate is negative for
N < a and N > K. In this …gure a = 20 and K = 100.

(d) In the logistic model there were two equilibrium, whereas in the Allee
model there are three. In the logistic model the per capita growth
rate was positive until the population size grew larger than the car-
rying capacity, whereas in the Allee model the per capita growth rate
is negative if N < a or N > K.
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3. -

(a) At equilibrium
dN

dt
= 0 = rN¤(1 ¡ N¤=K) ¡ HN¤

rN¤(1 ¡ N¤=K) ¡ HN¤ = 0

rN¤(1 ¡ N¤=K) = HN¤

r(1 ¡ N¤=K) = H
N¤

K
= 1 ¡ H

r

N¤ = K(1 ¡ H

r
)

For this equilibrium to make sense, 0 < H < r, otherwise
dN

dt
< 0

for all N , resulting in an equilibrium population size that is 0.

(b) If H is too large the harvested population will go extinct.

4. -

(a) At equilibrium,
dp

dt
= 0 = mp¤(1 ¡ p¤) ¡ ep¤.

¡m(p¤)2 + mp¤ ¡ ep¤ = 0

p¤(¡mp¤ + m ¡ e) = 0

p¤ = 0

p¤ = 1 ¡ e

m
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(b) The parameter e must be less than the parameter m for p¤ to take on
a positive value. This makes sense because if the extinction rate (e)
is greater than the migration rate (m) then there will be insu¢cient
migration to balance extinction.

(c) Let
dp

dt
= mp(1 ¡ p) ¡ ep = F (p)

dF

dp
(p) = m(1 ¡ p) ¡ mp ¡ e

= m ¡ e ¡ 2mp

Stability of the equilibrium p¤ = 0 :
dF

dp
(0) = m ¡ e: Which is positive (i.e., unstable) for m > e and

is negative (stable) for m < e. These dynamics make sense
because if the migration rate is greater than the extinction rate
then new subpopulations should be colonized at a greater rate
then extinction, therefore the metapopulation will persist. Con-
trariwise, if the extinction rate is greater than the migration rate,
the migration rate is insu¢cient to counteract extinction and the
metapopulation will go extinct.

Stability for the equilibrium p¤ = 1 ¡ e

m
:

dF

dp
(1 ¡ e

m
) = m(1 ¡ (1 ¡ e

m
)) ¡ m(1 ¡ e

m
) ¡ e

= e¡ (m¡e)¡e = e¡m: In contrast with the equilibrium p¤ = 0,

the equilibrium at 1 ¡ e

m
is unstable if m < e and is stable if

m > e. This makes sense because for a nonzero equilibrium
to persist the migration rate must be at least as great as the
extinction rate.

(d) In the logistic model there was a globally stable population size,
namely K. Likewise in the metapopulation model, there is a globally
stable metapopulation size, namely 1 ¡ e

m
. The metapopulation

model is related to the harvesting model in problem #3, in that the
term ep acts similarly as the term HN:

5. The set of equations describing a 2-species model of competition for space
is (see Hastings pgs. 147-148)

dp1

dt
= m1p1(1 ¡ p1) ¡ ep1

dp2

dt
= m2p2(1 ¡ p1 ¡ p2) ¡ m1p1p2 ¡ ep2.

(a) The fraction of patches occupied by the dominant competitor is given
by the variable p1: The di¤erential equation describing the change

in p1 through time is given by
dp1

dt
= m1p1(1 ¡ p1) ¡ ep1. The
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equilibrium fraction of habitat occupied by the dominant competitor

(p¤
1)occurs when

dp1

dt
= 0:

p¤
1(m1(1 ¡ p¤

1) ¡ e) = 0

p¤
1 = 0

p¤
1 =

m1 ¡ e

m1

The nonzero solution is p¤
1 = 1 ¡ e

m1
: As with problem #4, for the

equilibrium value of p1 to be positive then m1 > e.

(b) To determine the equilibrium fraction of habitat the subdominant
competitor occupies when the dominant competitor is at its nonzero
equilibrium proportion, substitute the equilibrium proportion for the

dominant competitor in place of p1 in the equation
dp2

dt
= m2p2(1 ¡

p1 ¡ p2) ¡ m1p1p2 ¡ ep2 which describes the change in fraction of

habitat occupied by the subdominant competitor and set
dp2

dt
= 0.

dp2

dt
= m2p

¤
2(1 ¡ m1 ¡ e

m1
¡ p¤

2) ¡ m1
m1 ¡ e

m1
p¤
2 ¡ ep¤

2 = 0

p¤
2(m2(1 ¡ m1 ¡ e

m1
¡ p¤

2) ¡ m1
m1 ¡ e

m1
¡ e) = 0

p¤
2 = 0

So one solution is p¤
2 = 0, but this is rather uninteresting. Let’s see

if there is a nonzero equilibrium by …nding the other root of the

equation, p¤
2(m2(1 ¡ m1 ¡ e

m1
¡ p¤

2) ¡ m1
m1 ¡ e

m1
¡ e) = 0 :

m2(1 ¡ m1 ¡ e

m1
¡ p¤

2) ¡ m1 = 0

¡m2p
¤
2 = m1 ¡ m2 + m2

m1 ¡ e

m1

p¤
2 = 1 ¡ m1

m2
¡ m1 ¡ e

m1

p¤
2 =

e

m1
¡ m1

m2

Provided
e

m1
>

m1

m2
, the other equilibrium, p¤

2 =
e

m1
¡ m1

m2
is a posi-

tive nonzero equilibrium for the subdominant competitor. Since
e is less than m1 for the superior competitor to have a nonzero
equilibrium, this means that for the subdominant competitor to
persist, m2 > m1; which makes sense because the subdominant
competitor must make up for its competitive disadvantage by
having a higher rate of migration.

(c) There are several ways to analyze this question. One approach is
to …rst numerically solve the set of di¤erential equations and then
observe the e¤ect of changing e on the trajectory through time of
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the proportion of subpopulations occupied by each species. This
analysis shows that species 1 appears to decline to extinction as the
extinction rate increased. Based on this observation, a more de…nite
reason is sought by looking at the equilibrium equations for species
1 and 2. From these equations it is clear that given a starting point
such that both species are coexisting, if you increase e species 1 will
go extinct. The equilibrium proportion for species 1 is 1 ¡ e

m1
,

whereas the equilibrium for species 2 is
e

m1
¡ m1

m2
, it is clear from

these equations that given m1 and m2 are …xed as you increase e
species 1 will decline to 0 and species 2 will increase.

(d) The equilibrium of species 2 increases (see 5c). This makes sense
because species 2 can only colonize uninhabited subpopulations, and
for species 2 to coexist at all - its migration rate must be greater
than that of species 1. Therefore, as the extinction rate of both
species 1 and 2 increases, more habitat will be available for species 2
to colonize.

6. Let’s add the terms ¡mNi to equations 7.5 and 7.6 because these are the
ones we worked with in lecture.

dN1

dt
= r1N1(1 ¡ N1 + ®12N2

K1
) ¡ mN1 (eq. 6a)

dN2

dt
= r2N2(1 ¡ N2 + ®21N1

K2
) ¡ mN2 (ep. 6b)

For m = 0, equations 6a and 6b reduce to 7.5 and 7.6 in Hastings.

A graphical analysis of the dynamics of two species de…ned by di¤erential
equations 6a and 6b involves drawing isoclines. The simplest way to
draw isoclines is to determine at what points on the N1 and N2 axes
the lines cross. These points will also provide information regarding
parameter values that allow coexistence. The point at which an
isocline crosses the N1 axes is when N2 = 0; likewise, the point at
which an isocline crosses the N2 axes is when N1 = 0.

A 0-isocline is a solution to the general di¤erential equation
dN

dt
= 0:

For equation 6a, the 0-isocline is de…ned by the relation r1N1(1 ¡
N1 + ®12N2

K1
) ¡ mN1 = 0. We seek the points where the line de-

scribed by this relation crosses the N1 and N2 axes

To …nd the point at which it crosses the N2 axis, set N1 = 0 and solve
for N2:

1 ¡ ®12N2

K1
¡ m

r1
= 0 by dividing through by r1N1 and then substituting

N1 = 0
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N2 =
K1(1 ¡ m

r1
)

®12

To determine at which point the relation r1N1(1¡N1 + ®12N2

K1
)¡mN1 =

0 crosses the N1 axis, set N2 = 0 and solve for N1 :

1 ¡ N1

K1
¡ m

r1
= 0 by dividing through by r1N1 and then substituting

N2 = 0

N1 = K1(1 ¡ m

r1
):

For equation 6b, the points at which the 0-isocline crosses the N1 and
N2 axes are found in a similar way as was done for equation 6a:

Solution for the point at which the relation r2N2(1¡ N2 + ®21N1

K2
)¡mN2

= 0 crosses the N1 axis:

1 ¡ ®21N1

K2
¡ m

r2
= 0 by dividing through by r2N2 and then substituting

N2 = 0

N1 =
K2(1 ¡ m

r2
)

®21

Solution for the point at which the relation r2N2(1¡ N2 + ®21N1

K2
)¡mN2

= 0 crosses the N2 axis:

1 ¡ N2

K2
¡ m

r2
= 0 by dividing through by r2N2 and then substituting

N1 = 0

N2 = K2(1 ¡ m

r2
):

Note that when we include rarefaction, K1 is replaced by K1(1 ¡ m

r1
)

and K2 is replaced by K2(1 ¡ m

r2
) in comparison with the points

at which the 0-isosclines cross the N1 and N2 axes in the standard
Lotka-Volterra models. Provided m is small enough, a case where

coexistence is impossible is when K1(1 ¡ m

r1
) >

K2(1 ¡ m

r2
)

®21
and

K1(1 ¡ m

r1
)

®12
> K2(1¡ m

r2
). A schematic plot of the 0-isoclines looks

like …gure 4 under these conditions. But as m is increased the points
on the N1 where the 0-isoclines cross switch arrangements resulting
in an arrangement of 0-isoclines represented in …gure 5. Under these
conditions, a stable equilibrium is attained.
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