
Problem Set #5: Biomathematics, Spring 2001
Discrete Time Predator-Prey Dynamics

1. -

(a) In …gure 1, ¸ = 2 and a = 0:1 and in …gure 2, ¸ = 2 and a = 0:5.
We see that as a increases x(t + 1) is less in the next generation for
a given y(t). As y(t) increases x(t + 1) decreases exponentially such
that as a increases, the decrease occurs at a greater rate. Larger
values of ¸ cause x(t + 1) to take on larger values for a given x(t),
y (t) and a.

(b) In …gure 3, c = 10 and a = 0:1 and in …gure 4, c = 10 and a = 0:5.
We see that as a increases y(t + 1) takes on larger values for a given
y(t) and x(t), when y(t) and x(t) are small. Larger values of c cause
y(t + 1) to take on larger values for a given x(t), y (t) and a.

(c) Equilibrium population sizes:

At equilibrium x(t + 1) = x(t) and y(t + 1) = y(t), simultaneously.
Let x(t + 1) = x(t) = x and y(t + 1) = y(t) = y, then
x = ¸xe¡ay and y = cx(1 ¡ e¡ay).
We need to simultaneously solve for x and y such that the solutions

satisfy the two previous equations. The …rst equation can easily
be solved for y such that it is not a function of x.

x = ¸xe¡ay

1

¸
= e¡ay by dividing each side by x and ¸

¡ay = ¡ ln¸ by taking the natural logarithm of each side and
simplifying

y =
ln¸

a
Since we have used the information provided by x = ¸xe¡ay to

solve for y we now substitute ln ¸
a for y into the equation y =

cx(1 ¡ e¡ay)and solve for x.

ln ¸
a = cx(1 ¡ exp(¡a

ln¸

a
))

ln ¸
a = cx(1 ¡ 1

¸)

x =
ln¸

ca(1 ¡ 1
¸)

=
¸ ln¸

ca(¸ ¡ 1)

(d) -

F (x(t); y(t)) = ¸x(t)e¡ay(t)

G(x(t); y(t)) = cx(t)(1 ¡ e¡ay(t))

@F

@x(t)
=

@¸x(t)e¡ay(t)

@x(t)
= ¸e¡ay(t)
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@F

@y(t)
=

@¸x(t)e¡ay(t)

@y(t)
= ¸x(t)e¡ay(t) ¢ (¡a) = ¡a¸x(t)e¡ay(t)

@G

@x(t)
=

@cx(t)(1 ¡ e¡ay(t))

@x(t)
= c(1 ¡ e¡ay(t))

@G

@y(t)
=

@cx(t)(1 ¡ e¡ay(t))

@y(t)
= ¡cx(t)e¡ay(t) ¢ (¡a) = acx(t)e¡ay(t)

(e) -

@F

@x(t)
(x; y) =

@F

@x(t)
(

¸ ln¸

ca(¸ ¡ 1)
;
ln¸

a
) = ¸ exp(¡a

ln¸

a
) = ¸ 1

¸ = 1

@F

@y(t)
(x; y) =

@F

@y(t)
(

¸ ln¸

ca(¸ ¡ 1)
;
ln¸

a
) = ¡a¸

¸ ln¸

ca(¸ ¡ 1)
exp(¡a

ln¸

a
) =

¡a¸
¸ ln¸

ca(¸ ¡ 1)

1

¸
= ¡ ¸ ln¸

c(¸ ¡ 1)
@G

@x(t)
(x; y) =

@G

@x(t)
(

¸ ln¸

ca(¸ ¡ 1)
;
ln¸

a
) = c(1 ¡ exp(¡a

ln¸

a
) = c(1 ¡

1

¸
)

@G

@y(t)
(x; y) =

@G

@y(t)
(

¸ ln¸

ca(¸ ¡ 1)
;
ln¸

a
) = ac

¸ ln¸

ca(¸ ¡ 1)
exp(¡a

ln¸

a
) =

ln¸

(¸ ¡ 1)

= =

0
B@

@F

@x(t)
(x; y)

@F

@y(t)
(x; y)

@G

@x(t)
(x; y)

@G

@y(t)
(x; y)

1
CA =

0
B@

1 ¡ ¸ ln¸

c(¸ ¡ 1)

c(1 ¡ 1

¸
)

ln¸

(¸ ¡ 1)

1
CA

(f) -

Note that now x = x¤ and y = y¤.
The equations for x(t + 1) ¡ x¤ and y(t + 1) ¡ y¤ are

x(t + 1) ¡ x¤ =
@F

@x(t)
(x¤; y¤)(x(t) ¡ x¤) +

@F

@y(t)
(x¤; y¤)(y(t) ¡ y¤)

y(t + 1) ¡ y¤ =
@G

@x(t)
(x¤; y¤)(x(t) ¡ x¤) +

@G

@y(t)
(x¤; y¤)(y(t) ¡ y¤).

Substituting for
@F

@x(t)
(x¤; y¤),

@F

@y(t)
(x¤; y¤),

@G

@x(t)
(x¤; y¤) and

@G

@y(t)
(x¤; y¤)

based on the evaluated partial derivatives of our model (see 1e)
yields,

x(t + 1) ¡ x¤ = 1 ¢ (x(t) ¡ x¤) ¡ ¸ ln¸

c(¸ ¡ 1)
(y(t) ¡ y¤)

y(t + 1) ¡ y¤ = c(1 ¡ 1

¸
)(x(t) ¡ x¤) +

ln¸

(¸ ¡ 1)
(y(t) ¡ y¤).

In matrix form the previous system of equations can be represented
as,
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µ
x(t + 1) ¡ x¤

y(t + 1) ¡ y¤

¶
=

0
B@

1 ¡ ¸ ln¸

c(¸ ¡ 1)

c(1 ¡ 1

¸
)

ln¸

(¸ ¡ 1)

1
CA

µ
x(t) ¡ x¤

y(t) ¡ y¤

¶
=

=
µ

x(t) ¡ x¤

y(t) ¡ y¤

¶
.

(g) The previous system of equations described how the distance between
a small perturbation and the equilibrium grows or decays with time.
The model has a similar form as one that describes populations sizes
of a single species divided into age classes. In that analysis we
evaluated eigenvalues to determine whether the population grows or
decays and whether it reaches a stable age distribution. Analogously,
in our two species model, we can determine whether the small per-
turbation away from the equilibrium continues to grow or decay. If
it continues to grow then the equilibrium is unstable and if it decays,
the equilibrium is stable.

The eigenvalues of the Jacobian matrix are

1

2

¸ + ln¸ ¡ 1 §
p

¸2 + ¸6 ln¸ ¡ 2¸ + ln¸2 ¡ 2 ln¸ + 1 ¡ ¸24 ln¸

¸ ¡ 1
.

Both eigenvalues are independent of a and c, and are complex num-
bers for ¸ > 1. We can still evaluate the absolute value of each
eigenvalue for ¸ > 1, and we see in …gure 5 that for ¸ > 1, both
eigenvalues take on the same value and each is greater than 1:
Therefore, the equilibrium population size (x¤; y¤) of the basic
Nicholson-Bailey model is always unstable, independent of the
parameter values.

2. To reproduce the …gures in the handout, we need to modify the program
presented in Lab 5 by …rst exchanging the functions that describe the
Nicholson-Bailey model with the Nicholson-Bailey model modi…ed with
Ricker density dependence. We then determine the parameters that were
used to produce the …gures. The only parameter that is not explicitly
provided is a, but this can be inferred from equation 29a in the handout
given r, q and ¹P . Note that from equation 28b, c = 1. Applying this
procedure to determine a, we …nd that for all the …gures, a = 0:2.

3. -

(a) In a refuge of size EK, in which K is the carrying capacity of the
population and E is the probability an individual is in the refuge
when the population is at its carrying capacity, EK is the maximum
size of the refuge. If every individual is equally likely to enter the
refuge, and EK � x(t), then EK=x(t) is the probability an individual
is in the refuge.
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(b) If all individuals that are in the refuge escape parasitism, then the
probability of escaping parasitism is 1. Of those that do not escape
parasitism, the probability of being parasitized is exp[¡ay(t)]. Thus
the expected probability an individual escapes parasitism is the prob-
ability it is in a refuge, (EK=x(t)), times the probability it escapes
parasitism given it is in a refuge, (1), plus the probability it is outside
a refuge, (1¡ EK=x(t)), times the probability of escaping parasitism
given it is outside a refuge, (exp[¡ay(t)]). Together this is
µ

EK

x(t)

¶
+

µ
1 ¡

µ
EK

x(t)

¶¶
(exp[¡ay(t)]).

The concept can be visualized using a Venn Diagram as illustrated
in …gure 6. In …gure 6 we see that the set of individuals that are
in a refuge are also in the set that escapes parasitism, whereas
only some of the individuals in the set of individuals outside the
refuge also escape parasitism.

(c) x(t + 1) = ¸x(t)
EK

x(t)
+ ¸x(t)

µ
1 ¡ EK

x(t)

¶
exp(¡ay(t)) = ¸EK +

¸ (x(t) ¡ EK) exp(¡ay(t)). Written this way it is clear that if
EK < x(t), then on average EK individuals are in the refuge and
escape parasitism and on average x(t) ¡ EK individuals are outside
the refuge and are vulnerable to parasitism at time t.

(d) The probability of not escaping parasitism is 1 minus the probability
of escaping parasitism or,

1 ¡
µµ

EK

x(t)

¶
+

µ
1 ¡

µ
EK

x(t)

¶¶
(exp[¡ay(t)])

¶

= 1 ¡
µµ

EK

x(t)

¶
+ (exp[¡ay(t)]) ¡

µ
EK

x(t)

¶
(exp[¡ay(t)])

¶

= 1 ¡
µ

EK

x(t)

¶
¡ (exp[¡ay(t)]) +

µ
EK

x(t)

¶
(exp[¡ay(t)])

=

µ
1 ¡

µ
EK

x(t)

¶¶
(1 ¡ (exp[¡ay(t)]))

(e) If
µ

1 ¡
µ

EK

x(t)

¶¶
(1 ¡ (exp[¡ay(t)])) is the probability of being par-

asitized, and in the normal Nicholson Bailey model the term (1 ¡
exp(¡ay(t)), was the probability of being parasitized then,

y(t +1) = cx(t)

µ
1 ¡

µ
EK

x(t)

¶¶
(1 ¡ (exp[¡ay(t)])) by substitution.

Simpli…cation yields,

y(t+1) = cx(t)

µ
1 ¡

µ
EK

x(t)

¶
¡ (exp[¡ay(t)]) +

µ
EK

x(t)

¶
(exp[¡ay(t)])

¶

by expanding
µ

1 ¡
µ

EK

x(t)

¶¶
(1 ¡ (exp[¡ay(t)]))
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y(t + 1) = c (x(t) ¡ EK ¡ x(t) (exp[¡ay(t)]) + EK (exp[¡ay(t)]))
by multiplying through by x(t)

y(t + 1) = c (x(t) ¡ EK)(1 ¡ exp[¡ay(t)]) by factoring

4. It makes more sense to incorporate a refuge in the Nicholson-Bailey model
that was modi…ed with Ricker density dependence (Problem 3), then com-
pare the e¤ects of having a refuge with not having a refuge for the four
sets of parameter values used to generate …gures 3.5-3.8 in the handout.

Fig. 3.5 parameters: By adding a refuge of small to intermediate size say,
E = 0:1 ¡ 0:5, the equilibrium is approached more quickly. Refuges
in which E > 0:65, essentially result in the parasitoid extinction
because too many hosts can …nd refuge.

Fig. 3.6 parameters: A refuge of even small size E ¼ 0:1 results in a
stable equilibrium instead of the limit cycle when there is no refuge.
But having a refuge of size E > 0:20 results in the rapid extinction
of the parasitoid.

Fig. 3.7 parameters: By incorporating a refuge of only size E ¼ 0:06
results in a stable equilibrium. A refuge of about size E > 0:4
results in the extinction of the parasitoid.

Fig. 3.8 parameters: A very small refuge of size E ¼ 0:01 results in a
stable limit cycle instead of chaos. Increasing the refuge to E ¼ 0:05
results in a stable equilibrium. A refuge larger than about E ¼ 0:20
results in the rapid extinction of the parasitoid.

In general we see the small refuges general stabilize population dynamics
in a host-parasitoid system. If refuges are too large - not surprisingly,
the parasitoid goes extinct.

5. -

(a) The parameter m should be between 0 and 1 because interference
among parasitoids should decrease the expected number of hosts par-
asitized by the parasitoid population. As discussed in the lab, the
term ay(t) in exp(¡ay(t)) is the expected number of hosts parasitized
by a parasitoid population of size y(t). By raising ay(t) to a power
between 0 and 1, this reduces this expected number.

(b) x(t + 1) = ¸x(t) exp(¡(ay(t))1¡m)

y(t + 1) = cx(t)(1 ¡ exp(¡(ay(t))1¡m)

(c) Equilibrium states:

At equilibrium x(t + 1) = x(t) = x and y(t + 1) = y(t) = y, simul-
taneously.

x = ¸x exp(¡(ay)1¡m)
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1
¸ = exp(¡(ay)1¡m)

(ay)1¡m = ln¸

ay = (ln¸)1=(1¡m)

y =
(ln¸)1=(1¡m)

a
Now solve for x using the equation y = cx(1 ¡ exp(¡(ay)1¡m) :

(ln¸)1=(1¡m)

a
= cx(1 ¡ exp(¡

µ
a
(ln¸)1=(1¡m)

a

¶1¡m

)

(ln¸)1=(1¡m)

a
= cx(1 ¡ exp(¡ ln¸))

(ln¸)1=(1¡m)

a
= cx(1 ¡ 1=¸)

x =
¸(ln¸)1=(1¡m)

ca(¸ ¡ 1)

For ¸ > e1 and 0 < m < 1, the model with interference causes both
the parasitoid and host to have higher equilibrium population
sizes. For 1 < ¸ <= e1 and 0 < m < 1, interference causes both
the parasitoid and the host to have lower equilibrium population
sizes.
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