
Biol 301 (Spring 2001): Solutions to Problem Set #4:

1. (a) In Þgure 1, at x = 0, the value of f(x) = λ/(1 + x)b is f(0) = λ,
namely λ = 1 and λ = 2. For a given λ, b causes the curve to decrease
more quickly initially (b ranges from 1 to 3 in the Þgure).

(b) In Þgure 2, the upper two curves are for λ = 1, 2 and b = 1. The
middle two curves are for λ = 1, 2 and b = 2. The lower two curves
are for λ = 1, 2 and b = 3. For b = 1, the function x(t + 1) has
an asymptotic value at y = λ. For larger b the function x(t + 1)
asymptotes at y = 0. For a given λ, increasing b causes the function
to take on a lower maximum and descend more rapidly to the right
of the maximum. For a given b, an increase in λ causes the function
to have a higher maximum value and descend more rapidly to the
right of the maximum.

(c) The carrying capacity is given by the solution of x∗ = λx∗
(1+x∗)bx

∗ =
λx∗

(1+x∗)b . Cancelling x∗ on the left and in the numerator on the right
yields 1 = λ

(1+x∗)b , cross multiplication yields (1 + x∗)b = λ, rising

each side to the power 1/b yields,(1 + x∗) = λ1/b, subtracting 1 from
each side yields the equilibrium, x∗ = λ1/b − 1. Note that the value
x = 0 also satisÞes conditions of an equilibrium.

(d) To determine the stability conditions of the equilibrium x∗ = λ1/b−1,
we employ stability analysis. Stability analyses consists of taking the
derivative of the function F (x(t)) = x(t+ 1) and then evaluating the
derivative at the equilibrium point x∗. For F (x) = λx

(1+x)b we have

dF

dx
=

(1 + x)bλ− b(1 + x)b−1λx

(1 + x)2b
=

λ

(1 + x)b
− λbx

(1 + x)b+1

Evaluating dF
dx at x

∗ = λ1/b − 1 yields:

dF

dx
(λ1/b − 1) =

λ

(1 + λ1/b − 1)b
− λb(λ1/b − 1)

(1 + λ1/b − 1)b+1

=
λ

λ
− λb(λ

1/b − 1)

λ(b+1)/b

= 1− λ
(b+1)/bb

λ(b+1)/b
+

λb

λ(b+1)/b

= 1− b+ bλ−1/b

= 1− b(1− 1

λ1/b
)

For the equilibrium to be stable the absolute value of dF
dx (λ1/b −

1) must be less than 1. Note that the derivative of F (x) at the
equilibrium is always < 1 (why?), so that the critical condition for
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stability is dF
dx (λ1/b − 1) > −1. In other word, the slope of F at the

equilibrium should not be too negative. In Mathematica you could
plot dFdx (λ1/b−1) = 1−b(1− 1

λ1/b ) to get an idea of the values of b and

λ that yield values of dFdx (λ1/b−1) bigger than−1. A more precise way
is to to consider the inequality dF

dx (λ1/b − 1) = 1− b(1− 1
λ1/b ) > −1,

which yields −1 < 1 − b(1 − 1
λ1/b ), hence −2 < −b(1 − 1

λ1/b ). Thus
we see that if −b(1− 1

λ1/b ) > −2, then the equilibrium is stable.

(e) Example for cobwebbing: in Figure 3, g = x(t + 1) versus x(t) is
plotted in which λ = 2 and b = 2. Our analysis predicts that the
carrying capacity in this case should be x∗ = 21/2− 1 = 0.414, which
appears to hold true in the Þgure. The cobwebbing suggests that x∗ is
stable. Based on our analysis, if this is true then −b(1− 1

λ1/b ) ≥ −2;a
quick check yields −2(1 − 1/1.414) ≥ −2 or −1.414 ≥ −2, so this
checks out.

2. (a) In Þgure 4, we see that for λ = 2, there is a monotonic approach to
equilibrium.

(b) In Þgure 5, we see that for λ = 5, the population reaches an equilib-
rium via dampened oscillations

(c) In Þgure 6, for λ = 10, the population enters a two cycle.

(d) In Þgure 7, for λ = 20, the population enters a four cycle.

(e) In Þgure 8, for λ = 40, the population has chaotic dynamics of pop-
ulation size.

NOTE: Corroborate these results with observations made in prob-
lem 1a,b,d.

3.

ln
x(t)

xs(t)
= ln

x(t)
x(t)

(1+x(t))b

= ln(1 + x(t))b

= b ln(1 + x(t))

For large x(t) we have 1 + x(t) ≈ x(t), and therefore ln x(t)
xs(t) =

b ln(x(t)) for large x(t), so that

ln
x(t)

xs(t)
= b lnx(t).

Now if we let z = ln(x(t)) and f = ln x(t)
xs(t) , then f(z) = bz which is a

linear function with slope b. To measure b in the Þeld, take a sample
of initial population sizes x(t), i.e. is the number of individuals at
the start of a given year. Then measure the corresponding number of
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individuals that survive to reproduction, xs(t), and regress the values
of ln x(t)

xs(t) on ln(x(t)). The slope of this regression line will give an
estimate of b.

4. (a) To solve this problem we have to use the stability analysis of problem
1. In Þgure 9, we have plotted the curve in the λ, b - plane deÞned
by −2 = −b(1 − 1

λ1/b ). All parameter combinations (λ, b) that lie
below this curve correspond to populations with stable equilibria, all
parameter combinations (λ, b) that lie above this curve correspond
to populations with unstable equilibria. Plotting the various combi-
nations given in the table yields the result that the only species that
has demographic parameters leading to an unstable equilibrium is
the one corresponding to the point (75.0,3.4), i.e the Potato Beetle.
As a check:

−2 < −0.1(1− 1
1.31/0.1 ) = −0.09 (stable)

−2 < −2.1(1− 1
2.21/2.1 ) = −0.65 (stable)

−2 < −1.9(1− 1
10.61/1.9 ) = −1.35 (stable)

−2 > −3.4(1− 1
751/3.4 ) = −2.44 (unstable)

−2 < −0.9(1− 1
541/0.9 ) = −0.88 (stable)

5. (a) In Þgure 10, the upper two curves are for λ = 2 and q = 1 and q = 2.
The lower two curves are for λ = 1 and q = 1 and q = 2. Note that
increasing q causes the curve to descend more rapidly.

(b) In Þgure 11, the upper curve and the middle curve that is broader
correspond to λ = 2, 1, respectively and q = 1. The second set of
curves correspond to λ = 1, 2 and q = 2. We see that as lambda
increases the maximum of x(t + 1) increases and the curve has a
steeper slope to the right of the maximum; as q increases for a given
λ, the maximum of x(t+ 1) is less and q doesn�t appear to effect the
relative slope of the curve. For practice, determine the value of x(t)
where the function x(t+ 1) has a maximum (ANSWER: 1

q ).

(c) The carrying capacity is the solution of the equation x∗ = λx∗e−qx
∗
.

Solving for x∗ yields the nonzero solution x = lnλ
q .

(d) As with problem 1, to determine the stability conditions at the carry-
ing capacity, we need to take the derivative of F (x(x(t)) and evaluate
it at the equilibrium carrying capacity. The condition for stability is
that the absolute value of the slope of F at x∗ is less than 1.

dF

dx
=

d

dx
λxe−qx

= λe−qx − λxqe−qx

Therefore, dFdx (x∗) = dF
dx ( lnλ

q ) = 1− lnλ upon simpliÞcation. For the
carrying capacity to be stable we need 1−lnλ > −1 (Note that 1−lnλ
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is always < 1!). Therefore, the stability condition is lnλ ≤ 2. i.e. the
range of stability is 0 < lnλ < 2. NOTE: The stability conditions
are independent of q, which was suggested in the description of Þgure
11 (the relative slope of the curve for a given λ wasn�t effected by q).

(e) In Þgure 12, λ = 2 and q = 1. Note that for this combination of
parameter values the equilibrium is less than the x(t) in which x(t+1)
takes on a maximum value.

6. (a) We can use information from #5 to get an idea where to start. Sta-
bility analysis suggests for lnλ > 2, the population does not have a
stable equilibrium and instead exhibits more complicated dynamics.
By plotting the trajectory of x(t+1) versus t, indeed you should have
found that at about e2 = 7.389 the population exits a stable equilib-
rium and starts to move on a two cycle. Thus, for 1 < λ < 7.389 the
population exhibits a stable equilibrium.

(b) 7.38 < λ < 12.30

(c) 12.30 < λ < 14.20

(d) 14.20 < λ < 15.10

7. In the plot of x(t + 1) versus x(t), small differences between values on
the x(t) axis correspond to small differences at time t+ 1. In stark
contrast, in the plot of x(t+ 10) versus x(t), small differences in x(t)
can correspond to large differences at time t+ 10. This means that if
you initially make a small error in the measurement of the population
size at time t, in a chaotic system, this may result in the predicted
value being much different from the observed value at time t + 10.
(see Hastings, Fig. 4.11, p. 98).

8. (a) There are three equilibria: at x = 0, at x ≈ 1.1, and at x ≈ 3.3.

(b) Cobwebbing shows that x ≈ 0 and x ≈ 3.3 are stable, while the
intermediate equilibrium is unstable.

(c) If the population is perturbed to values below the unstable equilib-
rium it will go to extinction. This is an example of a population that
needs to achieve a threshold population size in order to be viable.
This threshold population size is given by the unstable equilibrium:
if the population is perturbed to values above this unstable equilib-
rium, then it will approach the carrying capacity and survive in the
long run.
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Figure 1:

Figure 2:
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Figure 3:

Figure 4:
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Figure 5:

Figure 6:

7



Figure 7:

Figure 8:
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Figure 9:

Figure 10:
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Figure 11:

Figure 12:
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