
Solutions to homework #3 (Biol 301, Spring 2001)

1. Now we have a model with two age classes, juveniles and adults, in which
an adult can become a member of the adult age class in the next
generation by surviving. Therefore, the equation for the adult age
class is n1(t+1) = S0n0(t)+S1n1(t), where S0n0(t) are the surviving
juveniles that become adults and S1n1(t) are the surviving adults.
Therefore, the Leslie matrix is now

µ
M0 M1

S0 S1

¶

and the equations describing the dynamics of the population can be
summarized in a Leslie matrix model of the form

µ
n0(t + 1)
n1(t + 1)

¶
=

µ
M0 M1

S0 S1

¶µ
n0(t)
n1(t)

¶
:

2. i) Mathematical explanation (1): The absolute values of the two eigen-

values of the matrix,
µ

0 m1

S0 0

¶
are the same. Therefore, the

population will not converge to either one of the eigenvectors.

ii) Mathematical explanation (2): The Leslie matrix for a semelparous

organism is
µ

0 m1

S0 0

¶
. Thus, the dynamics of a population with

semelparous reproduction is

µ
n0(t + 1)
n1(t + 1)

¶
=

µ
0 m1

S0 0

¶µ
n0(t)
n1(t)

¶
.

Starting with an initial population in which the sizes of each age class

are represented by the vector

µ
n0(0)
n1(0)

¶
, we …nd that

µ
n0(1)
n1(1)

¶
=

µ
0 m1

S0 0

¶µ
n0(0)
n1(0)

¶
=

µ
m1n1(0)
S0n0(0)

¶
:

Likewise,
µ

n0(2)
n1(2)

¶
=

µ
0 m1

S0 0

¶µ
n0(1)
n1(1)

¶

=

µ
0 m1

S0 0

¶µ
m1n1(0)
S0n0(0)

¶

=

µ
m1S0n0(0)
S0m1n1(0)

¶
:

Notice that in generation 2, m1n1(0) and S0n0(0) have switched lo-
cations in the vector compared with generation 1. To see if this
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behaviour continues in generation 3, calculate
µ

n0(3)
n1(3)

¶
=

µ
0 m1

S0 0

¶µ
n0(2)
n1(2)

¶

=

µ
0 m1

S0 0

¶µ
m1S0n0(0)
S0m1n1(0)

¶

=

µ
m1S0m1n1(0)
S0m1S0n0(0)

¶
:

It does, suggesting that for even numbered generations the vector of

population sizes is
µ

n0(2t)
n1(2t)

¶
=

µ
mt

1S
t
0n0(0)

St
0m

t
1n1(0)

¶
and for odd num-

bered generations the vector is
µ

n0(2t ¡ 1)
n1(2t ¡ 1)

¶
=

µ
mt

1S
t¡1
0 n1(0)

St
0m

t¡1
1 n0(0)

¶
.

It is now easy to see that the ratio of the number of 0-year-olds to
1-year-olds in generation t + 1 will in general never the same as in
generation t, so that there is no stable age distribution.

iii) Biological explanation: Starting with n0(0) and n1(0), the fate of
n0(0) is independent of the fate of n1(0) for all future times. There-
fore, there are two independent populations, and there is no a priori
reason why the relative proportions should remains the same over
time.

3.

L =

0
@

1=3 4 2
2=3 0 0
0 1=2 0

1
A

To determine the long term growth rate and stable age distribution, …nd
the largest eigenvalue of L and its eigenvector.

4. (a) In Figure 1 the upper set of three curves is for parameter values ¸ =
2; K = 100;500; 1000 and the bottom set is ¸ = 1;K = 100; 500;1000.
We see that the function f(x) takes on larger values for larger ¸ and
K.

(b) K is a measure for the intensity of competition: the higher K, the
less intense is competition. ¸ is an intrinsic rate of increase.

(c) Using the function for the per capita number of o¤spring, we get
f(x), x(t + 1) = f(x(t)) ¢ x(t) = F (x(t)).
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Figure 1:

Figure 2:
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NOTE: IN PROBLEMS 5-7 x(t + 1) = g in the …gures.

5. In …gure 2, ¸ = 2, and the population grows inde…nitely.

In …gure 3, ¸ = 0:5, and the population decays to extinction.

In …gure 4, ¸ = 1, and the population stays at its initial size, no matter
what this initial size is (which makes sense biologically, for ¸ = 1
means that the average number of o¤spring per generation is 1, so
that any population simply replaces itself, regardless of its size).

6. In …gure 5, ¸ = 0:75 which we will take as a general case for ¸ < 1. Here
we see that the population goes extinct.

In …gure 6, ¸ = 3, no matter whether the initial population size is above
or below 2, the population converges on an equilibrium size of 2
individuals. In fact for any ¸ > 1, the population will approach a
size that is greater than zero.

7. a. In …gure 7, ¸ = 8 and h = 3, and we see some interesting behaviour,
in that there are now two positive equilibrium points. If the popu-
lation starts at a density greater than 1, it will converge to a density
of 2. If the population is at a density of 1, it will stay there indef-
initely. If the population starts at a density less than one it will go
extinct. For ¸ < 1, the curve of x(t+1) vs. x(t) is always lower than
the y = x line irrespective of h, which tells us that the population
will eventually go extinct (if we assume negative population sizes is
extinction).

b. Compared to 6., changing h will cause the curve x(t + 1) vs. x(t) to
move up or down. As h approaches 0, the dynamics are the same as
in problem #7. As h increases from 0, the range of initial population
sizes increases in which the population size will go to negative values,
i.e. extinct. In addition, the carrying capacity, i.e. the larger of the
two equilibria, will be lower than the carrying capacity in problem
6. For su¢ciently large h, the curve x(t + 1) vs. x(t) will always be
lower than the y = x which means that, as with the case when ¸ < 1,
the population will always go to negative values (extinction). Biolog-
ically, this means that high enough predation will cause extinction of
the prey.

c. The model allows for negative population sizes, which is nonsensical!
d. To avoid negative population sizes, predation should be modeled as

a factor h � 1, and NOT by subtracting a constant h! Thus, a
biologically more meaningful model of predation would be x(t+1) =
h ¢ f(x(t)) ¢ x(t), where h � 1.
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Figure 3:

Figure 4:
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Figure 5:

Figure 6:
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Figure 7:
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