1. (a) $\left(\begin{array}{cc}6 & 10 \\ 3 & 5\end{array}\right) \cdot\binom{2}{1}=\binom{6-10}{3-5}=-2\binom{2}{1}$
(b) $\left(\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right) \cdot\binom{2}{5}=2\binom{6}{7}$
(c) $\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right) \cdot\binom{0}{1}=\binom{0}{-a}$
(d) In the last calculation, $\binom{0}{-a}$ is a multiple of $\binom{0}{1}$ namely $-a\binom{0}{1}$.In other words, $\binom{0}{1}$ is an eigenvector of $\left(\begin{array}{cc}a & 0 \\ 0 & -a\end{array}\right)$ with corresponding eigenvalue $-a$.
(a) Show: $A w=A x+A y$

$$
\begin{aligned}
& A w=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x_{1}+y_{1}}{x_{2}+y_{2}}=\binom{a\left(x_{1}+y_{1}\right)+b\left(x_{2}+y_{2}\right)}{c\left(x_{1}+y_{1}\right)+d\left(x_{2}+y_{2}\right)} \text { by rules for the } \\
& \quad \text { multiplication of matrices } \\
& =\binom{a x_{1}+a y_{1}+b x_{2}+b y_{2}}{c x_{1}+c y_{1}+d x_{2}+d y_{2}}=\binom{a x_{1}+b x_{2}+a y_{1}+b y_{2}}{c x_{1}+d x_{2}+c y_{1}+d y_{2}} \text { by rearrangement of } \\
& =\binom{a x_{1}+b x_{2}}{c x_{1}+d x_{2}}+\binom{a y_{1}+b y_{2}}{c y_{1}+d y_{2}} \text { by rules for the addition of matrices } \\
& =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x_{1}}{x_{2}}+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{y_{1}}{y_{2}} \\
& =A x+A y, \text { where } A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), x=\binom{x_{1}}{x_{2}} \text { and } y=\binom{y_{1}}{y_{2}}
\end{aligned}
$$

(b) Show: $A \cdot r x=r(A \cdot x)$

$$
\begin{aligned}
& A \cdot r x=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{r x_{1}}{r x_{2}}=\binom{a r x_{1}+b r x_{2}}{c r x_{1}+d r x_{2}}=\binom{r a x_{1}+r b x_{2}}{r c x_{1}+r d x_{2}} \text { by a } \\
& \quad \text { rearrangement of terms } \\
& =r\binom{a x_{1}+b x_{2}}{c x_{1}+d x_{2}}=r\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{x_{1}}{x_{2}}=r(A \cdot x) \\
& \text { (c) Show: } A \cdot(r x+s y)=r(A \cdot x)+s(A \cdot y) \\
& A \cdot(r x+s y)=A \cdot r x+A \cdot s y \text { by (a) } \\
& =r(A \cdot x)+s(A \cdot y) \text { by (b) }
\end{aligned}
$$

(a) Show: $A B \neq B A$

$$
A B=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)=\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right) \text { by multiplication of ma- }
$$ trices

$B A=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \cdot\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}e a+f c & e b+f d \\ g a+h c & g b+h d\end{array}\right)$ by multiplication of matrices

$$
\left(\begin{array}{cc}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)=A B \neq B A=\left(\begin{array}{cc}
e a+f c & e b+f d \\
g a+h c & g b+h d
\end{array}\right)
$$

(b) Show: $A(B+C)=A B+A C$

$$
\begin{aligned}
& \left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)+\left(\begin{array}{ll}
i & j \\
k & l
\end{array}\right)\right]=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
e+i & f+j \\
g+k & h+l
\end{array}\right) \text { by addition } \\
& =\left(\begin{array}{ll}
a(e+i)+b(g+k) & a(f+j)+b(h+l) \\
c(e+i)+d(g+k) & c(f+j)+d(h+l)
\end{array}\right) \text { by multiplication } \\
& =\left(\begin{array}{ll}
a e+a i+b g+b k & a f+a j+b h+b l \\
c e+c i+d g+d k & c f+c j+d h+d l
\end{array}\right) \text { by expansion } \\
& =\left(\begin{array}{ll}
a e+b g & a f+b h \\
c e+d g & c f+d h
\end{array}\right)+\left(\begin{array}{cc}
a i+b k & a j+b l \\
c i+d k & c j+d l
\end{array}\right) \text { by rearrangement and factoring } \\
& =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{cc}
i & j \\
k & l
\end{array}\right) \text { by reverse multiplication } \\
& =A B+A C
\end{aligned}
$$

(c) Show: $(A B) C=A(B C)$
$A B=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)=\left(\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right)$ by multiplication of matrices
$(A B) C=\left(\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right) \cdot\left(\begin{array}{cc}i & j \\ k & l\end{array}\right)$
$=\left(\begin{array}{ll}i(a e+b g)+k(a f+b h) & j(a e+b g)+l(a f+b h) \\ i(c e+d g)+k(c f+d h) & j(c e+d g)+l(c f+d h)\end{array}\right)$ by multiplication of matrices
$B C=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right) \cdot\left(\begin{array}{cc}i & j \\ k & l\end{array}\right)=\left(\begin{array}{cc}e i+f k & e j+f l \\ g i+h k & g j+h l\end{array}\right)$ by multiplication of matrices
$A(B C)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot\left(\begin{array}{ll}e i+f k & e j+f l \\ g i+h k & g j+h l\end{array}\right)$
$=\left(\begin{array}{ll}a(e i+f k)+b(g i+h k) & a(e j+f l)+b(g j+h l) \\ c(e i+f k)+d(g i+h k) & c(e j+f l)+d(g j+h l)\end{array}\right)$ by multiplication of matrices
$=\left(\begin{array}{cc}a e i+a f k+b g i+b h k & a e j+a f l+b g j+b h l \\ c e i+c f k+d g i+d h k & c e j+c f l+d g j+d h l\end{array}\right)$ by expansion of terms
$=\left(\begin{array}{ll}a e i+b g i+a f k+b h k & a e j+b g j+a f l+b h l \\ c e i+d g i+c f k+d h k & c e j+d g j+c f l+d h l\end{array}\right)$ by rearrangement
$=\left(\begin{array}{cc}i(a e+b g)+k(a f+b h) & j(a e+b g)+l(a f+b h) \\ i(c e+d g)+k(c f+d h) & j(c e+d g)+l(c f+d h)\end{array}\right)$ by factoring
$=(A B) C$
(d) Show: $A I=I A=A$

$$
\begin{aligned}
& A I=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a+b \times 0 & a \times 0+b \\
c+d \times 0 & c \times 0+d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& I A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a+0 \times c & b+0 \times d \\
0 \times a+c & 0 \times b+d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=A
\end{aligned}
$$

(a) $A=\left(\begin{array}{ll}3 & 7 \\ 2 & 8\end{array}\right)$
$\lambda_{1,2}=\frac{(a+d) \pm \sqrt{(a+d)-4(a d-b c)}}{2}$
$\lambda_{1,2}=\frac{11 \pm \sqrt{11^{2}-4(24-14)}}{2}=\frac{11 \pm \sqrt{11^{2}-40}}{2}=\frac{11 \pm \sqrt{81}}{2}=\frac{11 \pm 9}{2}$. Therefore, $\lambda_{1}=10$ and $\lambda_{2}=1$.
Eigenvector for $\lambda_{1}=10$:
Let $x_{1}=\binom{x}{y}$
$\left(\begin{array}{ll}3 & 7 \\ 2 & 8\end{array}\right) x_{1}=10 x_{1}$
$\binom{3 x+7 y}{2 x+8 y}=\binom{10 x}{10 y}$
$\binom{6 x+14 y}{6 x+24 y}=\binom{20 x}{30 y}$
$-10 y=20 x-30 y$
$20 y=20 x \Rightarrow x_{1}=k\binom{1}{1}$, i.e. the vector corresponding to the eigenvalue $\lambda_{1}=10$, is some multiple of a 2 x 1 vector in which the upper component is equal to the bottom component
Eigenvector for $\lambda_{2}=1$:
Let $x_{2}=\binom{x}{y}$
$\left(\begin{array}{ll}3 & 7 \\ 2 & 8\end{array}\right) x_{2}=1 x_{2}$
$\binom{3 x+7 y}{2 x+8 y}=\binom{x}{y}$
$\binom{6 x+14 y}{6 x+24 y}=\binom{2 x}{3 y}$
$-10 y=2 x-3 y$
$y=-\frac{2}{7} x \Rightarrow x_{2}=k\binom{-3.5}{1}$
(b) $A=\left(\begin{array}{cc}a & 1-b \\ 1-b & a\end{array}\right)$

By the same procedure as in (a)

$$
\begin{aligned}
& \lambda_{1}=a+b-1 ; x_{1}=\binom{-1}{1} \\
& \lambda_{2}=a-b+1 ; x_{2}=\binom{1}{1}
\end{aligned}
$$

(a) $\left(\begin{array}{cc}6 & 10 \\ 3 & 5\end{array}\right)$

$$
\lambda_{1,2}=\frac{(6+5) \pm \sqrt{(6+5)^{2}-4(30-30)}}{2}=\frac{11 \pm \sqrt{11^{2}}}{2}=\frac{11 \pm 11}{2}=11,0
$$

(b) $\left(\begin{array}{cc}a & b \\ 3 a & 3 b\end{array}\right)$

$$
\lambda_{1,2}=\frac{(a+3 b) \pm \sqrt{(a+3 b)^{2}-4(a 3 b-b 3 a)}}{2}=\frac{(a+3 b) \pm \sqrt{(a+3 b)^{2}}}{2}=\frac{(a+3 b) \pm(a+3 b)}{2}=a+3 b, 0
$$

Matrix	Eigenvalues	Corresponding Eigenvectors
1	$6 ; 2 ; 2$	$\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right) ;\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right) ;\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$
2	$10 ; 1 ; 2 ; 3$	
	$\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right) ;\left(\begin{array}{c}-3.5 \\ 1 \\ 0 \\ 0\end{array}\right) ;\left(\begin{array}{c}0 \\ 0 \\ 1 \\ 1\end{array}\right) ;\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right)$	
	a; b; c; d	$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) ;\left(\begin{array}{c}1 \\ \frac{(b-a)}{e} \\ 0 \\ 0\end{array}\right) ;\left(\begin{array}{c}\frac{b-c-e}{a-c} \\ 1 \\ \frac{c-b}{e} \\ 0\end{array}\right) ;\left(\begin{array}{c}\frac{2 d e+d^{2}-d c-b e-b d+b c+e^{2}-e c}{d^{2}-d a+b a-b d} \\ \frac{c-e-d}{b-d} \\ 1 \\ \frac{d-c}{e}\end{array}\right.$

(a) Show: $A w=a r x+b s y$
$A w=A(a x+b y)$
$=A a x+A b y$ from problem 2 a
$=a A x+b A y$ from problem 2 b
$=a r x+b s y$ from definitions of $A x$ and $A y$ and then substitution
(b) Show: $A^{2} w=a r^{2} x+b s^{2} y$
$A w=a r x+b s y$ from 7 a
$A(A w)=A(a r x+b s y)=A a r x+A b s y$ from 2 a
$=a r A x+b s A y$ because a, r, b, s are scalars and from 2 b
$=a r^{2} x+b s^{2} y$ from definitions of $A x$ and $A y$ and then substitution
(c) Show: $A^{t} w=a r^{t} x+b s^{t} y$

We've shown that $A w=a r x+b s y$ and $A^{2} w=a r^{2} x+b s^{2} y$ which suggests, $A^{3} w=a r^{3} x+b s^{3} y$
To check if this is in fact true we can apply A to $A^{2} w$
$A\left(A^{2} w\right)=A\left(a r^{2} x+b s^{2} y\right)=a r^{2} A x+b s^{2} A y$ (from 7 b)
$=a r^{3} x+b s^{3} y$ again from the definitions of $A x$ and $A y$ and then substitution
From this we see the pattern is consistent suggesting
$A^{t} w=a r^{t} x+b s^{t} y$ for $t \geq 1$
(d) From 7c we showed that $A^{t} w=a r^{t} x+b s^{t} y$. Now both $r^{t} \rightarrow 0$ and $s^{t} \rightarrow 0$ as $t \rightarrow \infty$ if r and s are >0 and <1. Therefore, $a r^{t} x+b s^{t} y$ goes to 0
as t goes to ∞ if r and s are between 0 and 1 , which means that $A^{t} w$ also goes to 0 .
(a) $L=\left(\begin{array}{ll}\frac{1}{3} & 4 \\ \frac{2}{3} & 0\end{array}\right)$
(b) Using previous methods we find that the two eigenvalues for this 2 x 2 matrix are $\lambda_{1}=\frac{1}{6}+\frac{1}{6} \sqrt{97} ; \lambda_{2}=\frac{1}{6}-\frac{1}{6} \sqrt{97}$
Remembering that the long term growth rate is determined by the largest eigenvalue because if $x(t+1)=L x(t)$, then $x(t)=c_{1} \lambda_{1}^{t} v_{1}+c_{2} \lambda_{2}^{t} v_{2}$ provided that λ_{1} and λ_{2} are the two eigenvalues corresponding to L and v_{1} and v_{2} are the corresponding eigenvectors of λ_{1} and λ_{2}. In the equation, $c_{1} \lambda_{1}^{t} v_{1}+c_{2} \lambda_{2}^{t} v_{2}$, as t becomes large the term with the largest λ_{i} will dominate, i.e. as t becomes large the vector $x(t)$ approaches some multiple of the vector v_{i} that is associated with the largest eigenvalue λ_{i}.
For the matrix L, the largest eigenvalue is $\lambda_{1}=\frac{1}{6}+\frac{1}{6} \sqrt{97}$. The eigenvector associated with this eigenvalue is, $k\binom{\frac{1}{4}+\frac{1}{4} \sqrt{97}}{1}$.
Thus, the long term growth rate of the population is $\frac{1}{6}+\frac{1}{6} \sqrt{97}$ and the stable age distribution is $\frac{1}{4}+\frac{1}{4} \sqrt{97} 1$-year-olds for every 2 -year-old. This is the stable age distribution because as t becomes large, the population vector $x(t)$ approaches some multiple of $\binom{\frac{1}{4}+\frac{1}{4} \sqrt{97}}{1}$ in which the upper component of the matrix is the number of 1-year-olds and the bottom component is the number of 2-year-olds.

