
Lab 4:  Population dynamics in discrete time

For a population dynamical  system of the  form x(t+1)=F(x(t)), where x(t) and x(t+1) are population sizes in successive

generations, and F(x(t)) is the function describing the population size in the  next generation as a function of the population
size in the present  generation, one can easily obtain a graphic display of the dynamics by first creating a list of the popula

tion sizes in successive  generations  using  the  command NestList[], and then plotting this list using the  command List

Plot[]. This is very convenient  in understanding the  effects of  demographic parameters in the function F on the dynamic

behaves that the system exhibits.

For the following, we use the model

x(t+1)=r*x(t)/(1+x(t)^b)

which should be familiar by now. Thus we have

x(t+1)=f(x(t))*x(t)
where f(x(t))=r/(1+x(t)^b) is the per capita reproductive  output when the population size is equal to x(t).

To proceed, we first define the function F:

Clear@x, r, bD
F@x_D := r*xê H1 + x^bL
Note that  we have  first 'cleared' the parameters r and b as well as the  variable x, just to make sure that  we don't take over

some old values that might have been assigned previously.
We then specify the parameters r and b:

r=3
b=1

3

1

Next, we use the  command NestList[] to get a list of population sizes obtained from iterating the  function F  (i.e. exactly

what we want!):

x0=Random[]

l=NestList[F,x0,100]

Here x0 is the initial population size we start out with, which in this case we have chosen to be random number between 0

and 1. The number  100 appearing in the  command indicates  how many iterations  we want to  have  , and the  function F

specifies, of course, which function we want to iterate. Thus, the command above gives us a list l that contains the popula

tion sizes in 100 successive  generations  under the  condition that we start out with the  population size  x0 (and under the
assumption that  the  parameters  r and b have  the  values previously assigned!!). Now we  can plot this list to display the

dynamic graphically:

ListPlot[l]
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Task for this lab:  Fix r at a value of 2, and display the dynamics of this model for different choices of the parameter b, and
for different starting conditions x0.

For r=2, the  model  exhibits a stable  equilibrium for  b<4, independent  of  the  starting  condition x0 (why???). Asb is
increased above  4, the  model first exhibits a 2-cylce, then, as b is increased further, a 4-cycle, and in general a periodic

2^n cycles (use PlotJoined->True  to clearly see the  cycles). For this range of b-values  you should see that  this cyclic

behavior is independent  of the  starting condition, i.e. occurs for any choice of x0 (except  for one; which one?). As b is

increased further, the  system leaves the  periodic regime, and the  dynamics start to become very irregular: chaos sets in.

Find the  approximate value of b where you don't see cycles anymore. For a given value of b that  induces chaos, plot the
dynamics of the  models in one  and the  same diagram for different  starting conditions  that are nevertheless very close to

each other. For example: 

r=2

b=20

x0=Random[]

l1=NestList[F,x0,100];
x0=x0+0.001

l2=NestList[F,x0,100];

ListPlot[l1,PlotJoined->True]

ListPlot[l2,PlotJoined->True]
Show[%,%%]

By zooming in on the x-axis you can more clearly see that even though exactly the same function is used in the  two cases,
and even though the  starting conditions  are almost identical, the  trajectories of the  two  populations  soon become  very

different. For example, in generation 63 one population is very large while the other is small. This sensitive  dependence on

initial conditions is the hallmark of chaos. 

Show[%,PlotRange->{{60,80},{0,2}}]

Advanced topic: bifurcation diagrams

Lab4(2001).nb 2



Now that  you have  seen that  the dynamics change as the  parameters of the  model are changed, you might want to see this
whole process  in a single display.  In such a BIFURCATION DIAGRAM  the x-axis  is the  parameter that  controls the

dynamics, b in our  case (we  still assume that r is fixed at 2), and the y-axis shows  what going on in terms  of population

dynamics for the given value of b. Can you come up with a procedure to produce such a bifurcation diagram?

Clear[r,x,b,l];

r=3;

l={};

l=Append[l,{0,0}];
n1=100+1;

n2=200;

n3=100;

For[
  i=1,i<n1,i++,b=1+i*6/(n1-1);x=Random[];

  For[j=1,j<n2,j++,x=F[x]];

  For[j=1,j<n3,j++,x=F[x];l=Append[l,{b,x}]];

  ]

ListPlot[l]
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