ü Lab 1: Beginning to use Mathematica

In this lab, you will learn how to use Mathematica as an ordinary calculator, how to write functions in Mathematica, and how to integrate and differentiate functions. At the end of the lab you should be able to use the following comands:
$\mathrm{f}[\mathrm{x}] \mathrm{]}:=.$.
$D[f, x]$ - The derivative of a function f with respect to x
Integrate $[f, x]$ - The indefinite integral of f with respect to x
Integrate $[f,\{x, a, b\}]$ - The definite integral of f with respect to x between a and b

You should do the following problems:
(1) Calculate 4 to the power 100, the 50th root of $10,000,000$, the logarithm of the logarithm of the logarithm of 100 .
(2) To define functions of a variable x you have to use the construct

$$
\mathrm{f}\left[\mathrm{x} _\right]:=\ldots
$$

For example, to define the function 'squareroot of x ', you type:

$$
\begin{aligned}
& \mathrm{f}[\mathrm{x}]:=\operatorname{Sqrt}[\mathrm{x}] \\
& \text { (note the capital } \mathrm{S} \text { in } \operatorname{Sqrt}[]!\text {) }
\end{aligned}
$$

Once a function is defined in that way, you can evaluate it at different values of the variable x , by simply typing $\mathrm{f}[3.1]$, $\mathrm{f}[5.2]$, etc. Define the function 'squareroot of x ' as above, and use it to calculate the squareroots of $5,20,1,000,000$.
(3) Use the command $\mathrm{D}[\mathrm{f}, \mathrm{x}]$ to take the derivative with respect to x of the following functions. Note that you can either use the command directly by typing e.g. $\mathrm{D}\left[4 \mathrm{x}^{\wedge} 3, \mathrm{x}\right]$, or you can first define a function f by typing $\mathrm{f}\left[\mathrm{x} _\right]:=4 \mathrm{x}^{\wedge} 3$, and then using $\mathrm{D}[\mathrm{f}, \mathrm{x}]$.
$4 x^{\wedge} 3$
$\operatorname{Exp}\left[4 \mathrm{x}^{\wedge} 3\right]$
$\log \left[x^{\wedge} 5\right]$
$\operatorname{Sin}[\operatorname{Sqrt}[\mathrm{x}]]$
(4) Find the indefinite integral of the following functions with respect to x :

```
4x^3
Exp[4x^3]
Log[x^5]
Sin[Sqrt[x]]
```

(5) Find the definite integral of the following functions between $x=0$ and $x=1$
$4 x^{\wedge} 3$
$\operatorname{Exp}\left[4 x^{\wedge} 3\right]$
$\log \left[x^{\wedge} 5\right]$
$\operatorname{Sin}[\mathrm{Sqrt}[\mathrm{x}]]$
(6) Try to find an integral that Mathematica cannot solve!
(7) In a beehive, each cell is a regular hexagonal prism, open at one end with a trihedral angle x at the other end. It is believed that bees form their cells in such a way as to minimize the surface for a given volume, thus using the least anount of wax in cell construction. Based on the geometry of the cell, it can be shown that the surface area S, as a function of the angle x, is given by
$\mathrm{S}=6 * \mathrm{~s} * \mathrm{~h}-(3 / 2) * \mathrm{~s} * \mathrm{~s} * \operatorname{Cot}[\mathrm{x}]+(3 * \mathrm{~s} * \mathrm{~s} * \operatorname{Sqrt}[3] / 2) * \operatorname{Csc}[\mathrm{x}]$.

Here s and h are constsnts determining the shape of the cell. (Recall form Calculus that the cosecant function $\operatorname{Csc}[\mathrm{x}]$ is defined as $\operatorname{Csc}[\mathrm{x}]=1 / \operatorname{Sin}[\mathrm{x}]$.)
a) Calculate $d S / d x$
b) How would you determine the angle x that the bees prefer?

