
Biol 301 Spring 2001
Assignment 4: Discrete time population dynamics

Due Wednesday, February 7, 2001

Use Mathematica to solve the following problems whenever it is convenient for you.

1. Consider the following model for a population that experiences intraspeci…c competi-
tion:

x(t + 1) =
¸ ¢ x(t)
[1 + x(t)]b

,

where x(t) and x(t + 1) are population sizes in subsequent year, ¸ is the maximal
number of o¤spring per individual, i.e. the number of o¤spring per individual when
there is no competition, and b is an additional parameter. (Note that this model di¤ers
from the one I used in class!)

(a) Plot the number of o¤spring per individual as a function of population size for
di¤erent values of ¸ and b.

(b) Plot x(t+ 1) as a function of x(t) for di¤erent values of ¸ and b.

(c) Find the carrying capacity of this model.

(d) Determine the stability conditions for this equilibrium in terms of the parameters
¸ and b.

(e) Use the graphical method of cobwebbing to illustrate the dynamics of this pop-
ulation for di¤erent starting population sizes and for di¤erent values of ¸ and
b.

2. Consider again the model used in problem 1. Fix b = 10. For the following parameter
values of ¸, start with a population size of x(0) = 0:5 in year 0 and plot the population
sizes x(t) in the next 20 years, i.e. for t = 1; :::50. Comment.

(a) ¸ = 2

(b) ¸ = 5

(c) ¸ = 10

(d) ¸ = 20

(e) ¸ = 40

3. The model in problem 1 is usually interpreted in the following way: each year, each
individual of the starting population x(t) survives competition with a probability of
1=[1+x(t)]b, so that there are xs(t) = x(t)=[1+x(t)]b survivors in year t. Each survivor
then has ¸ o¤spring on average and dies after reproduction. The o¤spring form the
starting population in the next year, so that x(t+1) = ¸ ¢ x(t)=[1+ x(t)]b. This allows
one to actually measure the parameter b in the …eld, as follows. Consider the logarithm
of the ratio between initial population size and survivors of competition:

log

µ
x(t)

xs(t)

¶
:
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Express this as a function with log(x(t)) as the independent variable, and conclude

that for large x(t), log
³
x(t)

xs(t)

´
is a linear function of log(x(t)) with slope b. Based on

this …nding, describe how you would go about measuring b in the …eld or in the lab.

4. Based on the method of problem 3 and on measuring maximal reproductive rates ¸,
Hassell et al. (J. Anim. Ecol. 45, 471-486, 1976) give the following estimates for the
parameters ¸ and b in the model of problem 1 for several insect populations:

¸ b
Moth: Zeiraphera diniana 1:3 0:1
Bug: Leptoterna dolobrata 2:2 2:1
Mosquito: Aedes aegypti 10:6 1:9

Potato Beetle: Lepinotarsa decemlineata 75:0 3:4
Parasitoid Wasp: Bracon hebetor 54:0 0:9

(a) Plot these values on a ¸; b-parameter plane. (Recommendation: use a log scale for
the ¸-axis.)

(b) Use your results from problem 1 to determine which of these species will have a
stable equilibrium, and which ones won’t.

5. Consider the following model for a population that experiences intraspeci…c competi-
tion:

x(t + 1) = ¸ ¢ x(t) ¢ exp[¡q ¢ x(t)],
where x(t) and x(t + 1) are population sizes in subsequent year, ¸ is the maximal
number of o¤spring per individual, i.e. the number of o¤spring per individual when
there is no competition, and q is an additional parameter. This model is called the
Ricker model.

(a) Plot the number of o¤spring per individual as a function of population size for
di¤erent values of ¸ and q.

(b) Plot x(t+ 1) as a function of x(t) for di¤erent values of ¸ and q.

(c) Find the carrying capacity of this model.

(d) Determine the stability conditions for this equilibrium in terms of the parameters
¸ and q.

(e) Use the graphical method of cobwebbing to illustrate the dynamics of this pop-
ulation for di¤erent starting population sizes and for di¤erent values of ¸ and
q.

6. Consider again the Ricker model introduced in problem 5. Fix q = 1. By plotting
the dynamics for various values of ¸;…nd values of this parameter for which the Ricker
model exhibits

(a) a stable equilibrium

(b) a 2-cycle
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(c) a 4-cylce

(d) a 8-cycle

(e) chaos.

7. (See Hastings, Fig. 4.11, p. 98.) In this problem we want to visualize the unpre-
dictability in chaotic systems. For this purpose, choose values for ¸ and q for which
the Ricker model (problem 5) exhibits chaos (e.g. ¸ = exp(3:5) and q = 3:5=100,
which would correspond to the parameter values that Hastings uses for Fig. 4.11).
Run the dynamics for a su¢cient number generations and keep a record (in a list) of
pairs (x(t); x(t + 1)) during the run. Then plot x(t+1) versus x(t) from that list. The
result should be similar to the upper panel in Fig. 4.11 in Hastings’ book. Now do the
same thing, but keep a record of pairs (x(t); x(t + 10)). Then plot the various x(t+10)
versus the corresponding x(t). Now the result should be similar to the lower panel in
Fig. 4.11. What can you conclude about long term predictions in chaotic systems?
What about short term predictions?

8. Consider the following graph of x(t + 1) as a function of x(t):
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Figure 1: Allee E¤ect

This population is said to exhibit an Allee e¤ect: For very small population sizes, the
graph of F lies below the diagonal, which means that at very small population sizes
the population is actually decreasing, e.g. because individuals have to spend too much
time (and hence too many resources) looking for mates. This is in contrast to the
models discussed in class, where populations are always growing exponentially when
population sizes are low.

(a) How many non-zero equilibria are there for the dynamics of the population de-
scribed by the graph in Figure 1?

(b) Which ones of those equilibria are stable?

(c) Suppose the population is at the lower of the equilibria found in (a), and is per-
turbed away from this equilibrium. What happens? (Hint: use cobwebbing; there
are two cases to consider.)
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