MATH 300 ASSIGNMENT 1: DUE JAN 15 (FRI) IN CLASS

(1) Let \(z = 3 - 4i \). Plot the points \(z, -z, \bar{z} \) and \(1/z \) in the complex plane.

(2) Describe the set of points \(z \) in the complex plane that satisfies
\[
\left| (1 + i)z - 2 \right| = 4.
\]
Plot it in the complex plane.

(3) Prove that if \(|z| = 1 \) and \(z^4 \neq 1 \), then
\[
\text{Re}\left(\frac{1}{1 - z^4} \right) = \frac{1}{2}.
\]

(4) Find \(|z|, \text{Arg}(z) \) and \(\text{arg}(z) \) of the following complex numbers:
 a) \(z = 6 - 6i \)
 b) \(z = e^w \), where \(w = \sqrt{2}\pi e^{i\pi/4} \).

(5) Write each of the following numbers in the polar form \(re^{i\theta} \):
 a) \(\frac{1+i}{3+i} \)
 b) \((\sqrt{3} - i)^7 \).

(6) Compute the following integrals (simplify your answer to the best possible, hint: use \(\cos \theta = (e^{i\theta} + e^{-i\theta})/2 \) and similar formula for \(\sin \theta \)):
 a) \(\int_0^\pi \cos^3 \theta d\theta \).
 b) \(\int_0^\pi \sin^6(2\theta) d\theta \).

(7) Find all values of the following
 a) \((-81)^{\frac{1}{4}} \).
 b) \(\left(\frac{2i}{1-i} \right)^\frac{1}{5} \).

(8) Suppose \(u = u(x, y) \) is a real-valued function in a domain \(D \) and satisfies
\[
\frac{\partial u}{\partial x}(x, y) = y^2, \quad \text{and} \quad \frac{\partial u}{\partial y}(x, y) = 2xy,
\]
for any \((x, y) \) in \(D \). Determine \(u(x, y) \) up to an additive constant.

(9) Let \(b \) and \(c \) be complex constants. Prove that the solutions of the equation
\[
z^2 + bz + c = 0
\]
are given by the usual quadratic formula
\[
z = \frac{-b \pm \sqrt{b^2 - 4c}}{2},
\]
where \(\sqrt{b^2 - 4c} \) denotes one of the values of \((b^2 - 4c)^{\frac{1}{2}} \). Solve the equation
\[
z^2 - (2 + i)z + 3 + i = 0.
\]
Simplify your answer to the best possible form.