A Dynamical Analogue of Theorems by Bombieri-Masser-Zannier and Habegger

Khoa D. Nguyen

Department of Mathematics
University of British Columbia
and Pacific Institute for the Mathematical Sciences

May 2015
We will present:

Results of Bombieri-Masser-Zannier and Habegger under the principle of “Unlikely Intersection”
Their analogue in arithmetic dynamics obtained by Ghioca and N.

References:

We will present:

Results of Bombieri-Masser-Zannier and Habegger under the principle of “Unlikely Intersection”

Their analogue in arithmetic dynamics obtained by Ghioca and N.

References:

We will present:

Results of Bombieri-Masser-Zannier and Habegger under the principle of “Unlikely Intersection”

Their analogue in arithmetic dynamics obtained by Ghioca and N.

References:

We will present:

Results of Bombieri-Masser-Zannier and Habegger under the principle of “Unlikely Intersection”
Their analogue in arithmetic dynamics obtained by Ghioca and N.

References:

Dynamics: studies a self-map \(\varphi : S \to S \) and all the iterates \(\varphi^n \) for \(n \in \mathbb{N} \).

Arithmetic dynamics: \(S \) is a variety over \(K \) and \(\varphi \) is a \(K \)-morphism where \(K \) is “arithmetically interesting” (number fields, function fields,...).

From diophantine geometry to arithmetic dynamics: “torsion” vs “preperiodic”, ”(torsion translates of) algebraic subgroups” vs “(pre)periodic subvarieties”, “small subgroups” vs “orbits”,
Dynamics: studies a self-map $\varphi : S \to S$ and all the iterates φ^n for $n \in \mathbb{N}$.

Arithmetic dynamics: S is a variety over K and φ is a K-morphism where K is "arithmetically interesting" (number fields, function fields,...).

From diophantine geometry to arithmetic dynamics: "torsion" vs "preperiodic", "(torsion translates of) algebraic subgroups" vs "(pre)periodic subvarieties", "small subgroups" vs "orbits",...
Dynamics: studies a self-map $\varphi : S \to S$ and all the iterates φ^n for $n \in \mathbb{N}$.

Arithmetic dynamics: S is a variety over K and φ is a K-morphism where K is “arithmetically interesting” (number fields, function fields,...).

From diophantine geometry to arithmetic dynamics: “torsion” vs “preperiodic”, ”(torsion translates of) algebraic subgroups” vs “(pre)periodic subvarieties”, “small subgroups” vs “orbits”,...
Principle: when the intersection of two objects is larger than expected, there should be an underlying geometric reason.

Simplest example: Lang’s question answered by Ihara, Serre, and Tate:

Theorem

Let X be a curve in \mathbb{G}_m^2. If X has infinitely many points (a, b) where both a and b are roots of unity then X is a torsion translate of an algebraic subgroup.

This has many vast generalizations. Example: Mordell-Lang Conjecture for semi-abelian varieties by Faltings, Vojta, and McQuillan. Another example: work of Bombieri, Masser, and Zannier.
Unlikely Intersection

Principle: when the intersection of two objects is larger than expected, there should be an underlying geometric reason.

Simplest example: Lang’s question answered by Ihara, Serre, and Tate:

Theorem

Let X be a curve in \mathbb{G}_m^2. If X has infinitely many points (a, b) where both a and b are roots of unity then X is a torsion translate of an algebraic subgroup.

This has many vast generalizations. Example: Mordell-Lang Conjecture for semi-abelian varieties by Faltings, Vojta, and McQuillan. Another example: work of Bombieri, Masser, and Zannier.
Unlikely Intersection

Principle: when the intersection of two objects is larger than expected, there should be an underlying geometric reason.

Simplest example: Lang’s question answered by Ihara, Serre, and Tate:

Theorem

Let X be a curve in \mathbb{G}_m^2. If X has infinitely many points (a, b) where both a and b are roots of unity then X is a torsion translate of an algebraic subgroup.

This has many vast generalizations. Example: Mordell-Lang Conjecture for semi-abelian varieties by Faltings, Vojta, and McQuillan. Another example: work of Bombieri, Masser, and Zannier.
From now on: everything is over \(\bar{\mathbb{Q}} \).

Think of torsion points \((a, b)\) as “subgroups of codimension 2 in \(\mathbb{G}_m^2 \)”.

Question: fix a curve \(X \) in \(\mathbb{G}_m^n \), what happens when intersect \(X \) with:

(a) the union of all subgroups of codimension 2?
(b) the union of all subgroups of codimension 1?

Bombieri, Masser, and Zannier treated both. Today we only focus on (b). Answer: when \(X \) is not contained in a translate of an algebraic subgroup, the intersection is infinite but it is small (i.e. bounded height).
From now on: everything is over $\overline{\mathbb{Q}}$

Think of torsion points (a, b) as “subgroups of codimension 2 in \mathbb{G}_m^2”.

Question: fix a curve X in \mathbb{G}_m^n, what happens when intersect X with:

(a) the union of all subgroups of codimension 2?
(b) the union of all subgroups of codimension 1?

Bombieri, Masser, and Zannier treated both. Today we only focus on (b). Answer: when X is not contained in a translate of an algebraic subgroup, the intersection is infinite but it is *small* (i.e. bounded height).
From now on: everything is over $\overline{\mathbb{Q}}$.

Think of torsion points (a, b) as “subgroups of codimension 2 in \mathbb{G}_m^2”.

Question: fix a curve X in \mathbb{G}_m^n, what happens when intersect X with:

(a) the union of all subgroups of codimension 2?
(b) the union of all subgroups of codimension 1?

Bombieri, Masser, and Zannier treated both. Today we only focus on (b). Answer: when X is not contained in a translate of an algebraic subgroup, the intersection is infinite but it is small (i.e. bounded height).
From now on: everything is over $\overline{\mathbb{Q}}$.

Think of torsion points (a, b) as “subgroups of codimension 2 in \mathbb{G}_m^2”.

Question: fix a curve X in \mathbb{G}_m^n, what happens when intersect X with:

(a) the union of all subgroups of codimension 2?
(b) the union of all subgroups of codimension 1?

Bombieri, Masser, and Zannier treated both. Today we only focus on (b). Answer: when X is not contained in a translate of an algebraic subgroup, the intersection is infinite but it is small (i.e. bounded height).
h: absolute logarithmic Weil height on $\mathbb{P}^1(\overline{\mathbb{Q}})$. Define h_n on $(\mathbb{P}^1)^n$ by:

$$h_n(a_1, \ldots, a_n) := h(a_1) + \ldots + h(a_n).$$

A subset of $(\mathbb{P}^1)^n$ has bounded height: boundedness with respect to h_n.

Theorem (BMZ 1999)

Let X be a curve in \mathbb{G}_m^n that is not contained in any translate of an algebraic subgroup then $\bigcup_V X \cap V$ has bounded height where V ranges over all algebraic subgroups of codimension 1.
h: absolute logarithmic Weil height on $\mathbb{P}^1(\bar{\mathbb{Q}})$. Define h_n on $(\mathbb{P}^1)^n$ by:

$$h_n(a_1, \ldots, a_n) := h(a_1) + \ldots + h(a_n).$$

A subset of $(\mathbb{P}^1)^n$ has bounded height: boundedness with respect to h_n.

Theorem (BMZ 1999)

Let X be a curve in \mathbb{G}_m^n that is not contained in any translate of an algebraic subgroup then $\bigcup_V X \cap V$ has bounded height where V ranges over all algebraic subgroups of codimension 1.
Let $d \geq 2$ and $C_d(X)$ be the polynomial of degree d satisfying $C_d(x + \frac{1}{x}) = x^d + \frac{1}{x^d}$.

Exceptional polynomials (of degree d) are polynomials that are linearly conjugate to x^d or $\pm C_d(x)$. Non-exceptional polynomials are also called “disintegrated” by Medvedev-Scanlon.

Let $n \geq 2$ and $f_1, \ldots, f_n \in \overline{\mathbb{Q}}[x]$ of degrees at least 2. Let $\varphi := f_1 \times \ldots \times f_n$ be the coordinate-wise self-map of $(\mathbb{P}^1)^n$:

$$\varphi(a_1, \ldots, a_n) = f_1(a_1) + \ldots + f_n(a_n).$$

For the arithmetic dynamics of φ, it suffices to study the arithmetic of \mathbb{G}_m^n and the case when f_1, \ldots, f_n are non-exceptional.
Let $d \geq 2$ and $C_d(X)$ be the polynomial of degree d satisfying
$$C_d(x + \frac{1}{x}) = x^d + \frac{1}{x^d}.$$

Exceptional polynomials (of degree d) are polynomials that are linearly conjugate to x^d or $\pm C_d(x)$. Non-exceptional polynomials are also called “disintegrated” by Medvedev-Scanlon.

Let $n \geq 2$ and $f_1, \ldots, f_n \in \bar{\mathbb{Q}}[x]$ of degrees at least 2. Let $\varphi := f_1 \times \ldots \times f_n$ be the coordinate-wise self-map of $(\mathbb{P}^1)^n$:
$$\varphi(a_1, \ldots, a_n) = f_1(a_1) + \ldots + f_n(a_n).$$

For the arithmetic dynamics of φ, it suffices to study the arithmetic of \mathbb{G}_m^n and the case when f_1, \ldots, f_n are non-exceptional.
Let $d \geq 2$ and $C_d(X)$ be the polynomial of degree d satisfying
$C_d(x + \frac{1}{x}) = x^d + \frac{1}{x^d}$.

Exceptional polynomials (of degree d) are polynomials that are
linearly conjugate to x^d or $\pm C_d(x)$. Non-exceptional polynomials are also called “disintegrated” by Medvedev-Scanlon.

Let $n \geq 2$ and $f_1, \ldots, f_n \in \bar{\mathbb{Q}}[x]$ of degrees at least 2. Let
$\varphi := f_1 \times \ldots \times f_n$ be the coordinate-wise self-map of $(\mathbb{P}^1)^n$:

$$\varphi(a_1, \ldots, a_n) = f_1(a_1) + \ldots + f_n(a_n).$$

For the arithmetic dynamics of φ, it suffices to study the arithmetic of \mathbb{G}_m^n and the case when f_1, \ldots, f_n are non-exceptional.
Let $d \geq 2$ and $C_d(X)$ be the polynomial of degree d satisfying $C_d(x + \frac{1}{x}) = x^d + \frac{1}{x^d}$.

Exceptional polynomials (of degree d) are polynomials that are linearly conjugate to x^d or $\pm C_d(x)$. Non-exceptional polynomials are also called “disintegrated” by Medvedev-Scanlon.

Let $n \geq 2$ and $f_1, \ldots, f_n \in \overline{\mathbb{Q}}[x]$ of degrees at least 2. Let $\varphi := f_1 \times \ldots \times f_n$ be the coordinate-wise self-map of $(\mathbb{P}^1)^n$:

$$\varphi(a_1, \ldots, a_n) = f_1(a_1) + \ldots + f_n(a_n).$$

For the arithmetic dynamics of φ, it suffices to study the arithmetic of \mathbb{G}_m^n and the case when f_1, \ldots, f_n are non-exceptional.
We have an analogue of the BMZ Theorem:

Theorem (N. 2013)

Let X be a curve in $(\mathbb{P}^1)^n$ whose projection to each factor \mathbb{P}^1 is non-constant. Assume that X is not contained in any φ-periodic hypersurface. Then $\bigcup V X \cap V$ has bounded height where V ranges over all φ-periodic hypersurfaces.
Bombieri, Masser, and Zannier tried to generalize their theorem in 1999 for intersection between a subvariety of dimension r with algebraic subgroups of codimension r. This is rather subtle. After a series of work, they proved a “structure theorem” and asked a “bounded height conjecture” in 2007. Habegger proved this conjecture in 2009. All these are inside \mathbb{G}_m^n. The more general version for semi-abelian varieties is still open.
Bombieri, Masser, and Zannier tried to generalize their theorem in 1999 for intersection between a subvariety of dimension r with algebraic subgroups of codimension r. This is rather subtle. After a series of work, they proved a “structure theorem” and asked a “bounded height conjecture” in 2007. Habegger proved this conjecture in 2009.

All these are inside \mathbb{G}_m^n. The more general version for semi-abelian varieties is still open.
Bombieri, Masser, and Zannier tried to generalize their theorem in 1999 for intersection between a subvariety of dimension r with algebraic subgroups of codimension r. This is rather subtle. After a series of work, they proved a “structure theorem” and asked a “bounded height conjecture” in 2007. Habegger proved this conjecture in 2009.

All these are inside \mathbb{G}_m^n. The more general version for semi-abelian varieties is still open.
Their approach: given \(X\) of dimension \(r\) in \(\mathbb{G}_m^n\), define "anomalous subvarieties" of \(X\), then define \(X^{oa} := X \setminus \bigcup Z\) where \(Z\) ranges over all anomalous subvarieties.

They prove the following:

Theorem

Let \(X\) be a subvariety of dimension \(r\) in \(\mathbb{G}_m^n\).

(a) (BMZ 2007) Structure Theorem: \(X^{oa}\) is Zariski open in \(X\).

(b) (Habegger 2009) Bounded Height Theorem: the intersection \(\bigcup V X^{oa} \cap V\) has bounded height where \(V\) ranges over all algebraic subgroups of codimension \(r\).

Part (b) was conjectured by Bombieri-Masser-Zannier in 2007.
Their approach: given X of dimension r in \mathbb{G}_m^n, define "anomalous subvarieties" of X, then define $X^{oa} := X \setminus \bigcup Z$ where Z ranges over all anomalous subvarieties.

They prove the following:

Theorem

Let X be a subvariety of dimension r in \mathbb{G}_m^n.

(a) *(BMZ 2007) Structure Theorem:* X^{oa} is Zariski open in X.

(b) *(Habegger 2009) Bounded Height Theorem:* the intersection $\bigcup V X^{oa} \cap V$ has bounded height where V ranges over all algebraic subgroups of codimension r.

Part (b) was conjectured by Bombieri-Masser-Zannier in 2007.
Consider $f_1(x), \ldots, f_n(x)$ and $\varphi = f_1 \times \ldots \times f_n$ as before.

Given X of dimension r in $(\mathbb{P}^1)^n$, we can define φ-anomalous subvarieties of X, then define $X_{\varphi}^{oa} := X \setminus \bigcup Z$ where Z ranges over all the φ-anomalous subvarieties.
Consider $f_1(x), \ldots, f_n(x)$ and $\varphi = f_1 \times \ldots \times f_n$ as before. Given X of dimension r in $(\mathbb{P}^1)^n$, we can define φ-anomalous subvarieties of X, then define $X_{\varphi}^{oa} := X \setminus \bigcup Z$ where Z ranges over all the φ-anomalous subvarieties.
We have the following:

Theorem (Ghioca-N. 2014)

Notation as above.

(a) *Structure Theorem:* X_{φ}^{oa} is Zariski open in X.

(b) *Bounded Height Theorem:* the intersection $\bigcup_{V} X_{\varphi}^{oa} \cap V$ has bounded height where V ranges over all φ-periodic subvarieties of codimension r.
THANK YOU.