Some Problems of Unlikely Intersections in Diophantine Geometry and Algebraic Dynamics

Khoa D. Nguyen

Department of Mathematics
University of British Columbia
and Pacific Institute for the Mathematical Sciences

2016
Diophantine geometry studies solution sets of systems of polynomial equations over interesting rings and fields.

Example: solve $x^n + y^n = z^n$ with $n \in \mathbb{N}$, $n \geq 2$, and $x, y, z \in \mathbb{Z}$.

Algebraic dynamics studies the families of iterates

$$\phi, \phi^2 := \phi \circ \phi, \phi^3 := \phi \circ \phi \circ \phi, \ldots$$

where X is a variety over a field K and ϕ is a K-morphism from X to itself.

Example: when $X = \mathbb{C}$, we can regard ϕ as a polynomial with complex coefficients.
Introduction

Diophantine geometry studies solution sets of systems of polynomial equations over interesting rings and fields.

Example: solve $x^n + y^n = z^n$ with $n \in \mathbb{N}$, $n \geq 2$, and $x, y, z \in \mathbb{Z}$.

Algebraic dynamics studies the families of iterates

$$
\phi, \quad \phi^2 := \phi \circ \phi, \quad \phi^3 := \phi \circ \phi \circ \phi, \ldots
$$

where X is a variety over a field K and ϕ is a K-morphism from X to itself.

Example: when $X = \mathbb{C}$, we can regard ϕ as a polynomial with complex coefficients.
Diophantine geometry studies solution sets of systems of polynomial equations over interesting rings and fields.

Example: solve \(x^n + y^n = z^n \) with \(n \in \mathbb{N}, n \geq 2, \) and \(x, y, z \in \mathbb{Z}. \)

Algebraic dynamics studies the families of iterates

\[
\phi, \; \phi^2 := \phi \circ \phi, \; \phi^3 := \phi \circ \phi \circ \phi, \ldots
\]

where \(X \) is a variety over a field \(K \) and \(\phi \) is a \(K \)-morphism from \(X \) to itself.

Example: when \(X = \mathbb{C} \), we can regard \(\phi \) as a polynomial with complex coefficients.
Diophantine geometry studies solution sets of systems of polynomial equations over interesting rings and fields.

Example: solve $x^n + y^n = z^n$ with $n \in \mathbb{N}$, $n \geq 2$, and $x, y, z \in \mathbb{Z}$.

Algebraic dynamics studies the families of iterates

$$\phi, \phi^2 := \phi \circ \phi, \phi^3 := \phi \circ \phi \circ \phi, \ldots$$

where X is a variety over a field K and ϕ is a K-morphism from X to itself.

Example: when $X = \mathbb{C}$, we can regard ϕ as a polynomial with complex coefficients.
Example: consider the family of quadratic polynomials \(\{ f_c(t) = t^2 + c \} \) parametrized by \(c \in \mathbb{C} \). We have:

\[
f_c(t) = t^2 + c, \quad f_c^2(t) = t^4 + 2ct^2 + c^2 + c, ...
\]

The orbit of 0 is \(\{ f_c^n(0) : n \in \mathbb{N} \} = \{ c, c^2 + c, (c^2 + c)^2 + c, \ldots \} \).

\(f_c^n(0) - f_c^m(0) \) for \(m \neq n \) is a nonzero polynomial in \(c \).

The famous Mandelbrot set is the set of \(c \in \mathbb{C} \) for which the orbit of 0 is bounded.
Example: consider the family of quadratic polynomials \(\{f_c(t) = t^2 + c\} \) parametrized by \(c \in \mathbb{C} \). We have:

\[f_c(t) = t^2 + c, \quad f_c^2(t) = t^4 + 2ct^2 + c^2 + c, \ldots \]

The orbit of 0 is \(\{f_c^n(0) : n \in \mathbb{N}\} = \{c, c^2 + c, (c^2 + c)^2 + c, \ldots\} \).

\(f_c^n(0) - f_c^m(0) \) for \(m \neq n \) is a nonzero polynomial in \(c \).

The famous Mandelbrot set is the set of \(c \in \mathbb{C} \) for which the orbit of 0 is bounded.
Example: consider the family of quadratic polynomials \(\{f_c(t) = t^2 + c\}\) parametrized by \(c \in \mathbb{C}\). We have:

\[f_c(t) = t^2 + c, \quad f_c^2(t) = t^4 + 2ct^2 + c^2 + c, \ldots \]

The orbit of 0 is \(\{f_c^n(0) : n \in \mathbb{N}\} = \{c, c^2 + c, (c^2 + c)^2 + c, \ldots\}\).

\(f_c^n(0) - f_c^m(0)\) for \(m \neq n\) is a nonzero polynomial in \(c\).

The famous Mandelbrot set is the set of \(c \in \mathbb{C}\) for which the orbit of 0 is bounded.
Example: consider the family of quadratic polynomials \(\{f_c(t) = t^2 + c\} \) parametrized by \(c \in \mathbb{C} \). We have:

\[
f_c(t) = t^2 + c, \quad f_c^2(t) = t^4 + 2ct^2 + c^2 + c,\ldots
\]

The orbit of 0 is \(\{f_c^n(0) : n \in \mathbb{N}\} = \{c, c^2 + c, (c^2 + c)^2 + c, \ldots\}. \)

\(f_c^n(0) - f_c^m(0) \) for \(m \neq n \) is a nonzero polynomial in \(c \).

The famous Mandelbrot set is the set of \(c \in \mathbb{C} \) for which the orbit of 0 is bounded.
Example: consider the family of quadratic polynomials \(\{ f_c(t) = t^2 + c \} \) parametrized by \(c \in \mathbb{C} \). We have:

\[
f_c(t) = t^2 + c, \quad f_c^2(t) = t^4 + 2ct^2 + c^2 + c, \ldots
\]

The orbit of 0 is \(\{ f_c^n(0) : n \in \mathbb{N} \} = \{ c, c^2 + c, (c^2 + c)^2 + c, \ldots \} \).

\(f_c^n(0) - f_c^m(0) \) for \(m \neq n \) is a nonzero polynomial in \(c \).

The famous Mandelbrot set is the set of \(c \in \mathbb{C} \) for which the orbit of 0 is bounded.
Figure: The Mandelbrot set
Highly interesting questions combining number theory and dynamics:

Perhaps this is well-known

Conjecture: every algebraic number in the Cantor set is a rational number.

How about

Question: is it true that every algebraic number \(c \) in the boundary of the Mandelbrot set must be a root of the polynomial

\[
f_c^n(0) - f_c^m(0)
\]

for some \(m \neq n \)?
Highly interesting questions combining number theory and dynamics:

Perhaps this is well-known

Conjecture: every algebraic number in the Cantor set is a rational number.

How about

Question: is it true that every algebraic number \(c \) in the boundary of the Mandelbrot set must be a root of the polynomial

\[
 f_c^n(0) - f_c^m(0)
\]

for some \(m \neq n \)?
Highly interesting questions combining number theory and dynamics:

Perhaps this is well-known

Conjecture: every algebraic number in the Cantor set is a rational number.

How about

Question: is it true that every algebraic number \(c \) in the boundary of the Mandelbrot set must be a root of the polynomial

\[f^m_c(0) - f^n_c(0) \]

for some \(m \neq n \)?
Highly interesting questions combining number theory and dynamics:

Perhaps this is well-known

Conjecture: every algebraic number in the Cantor set is a rational number.

How about

Question: is it true that every algebraic number c in the boundary of the Mandelbrot set must be a root of the polynomial

$$f_c^n(0) - f_c^m(0)$$

for some $m \neq n$?
Highly interesting questions combining number theory and dynamics:

Perhaps this is well-known

Conjecture: every algebraic number in the Cantor set is a rational number.

How about

Question: is it true that every algebraic number c in the boundary of the Mandelbrot set must be a root of the polynomial

$$f_c^n(0) - f_c^m(0)$$

for some $m \neq n$?
Roughly, **the principle of unlikely intersections** predicts that when the *intersection* of two arithmetic objects is *larger than expected* there should be an *underlying geometric reason*.

Example: is it likely for a plane curve V to contain infinitely many points (α, β) where both α and β are roots of unity?

Other words: is it likely for a polynomial equation $P(X, Y) = 0$ to have infinitely many solutions (α, β) where both α and β are roots of unity?
Roughly, the principle of unlikely intersections predicts that when the intersection of two arithmetic objects is larger than expected there should be an underlying geometric reason.

Example: is it likely for a plane curve V to contain infinitely many points (α, β) where both α and β are roots of unity?

Other words: is it likely for a polynomial equation $P(X, Y) = 0$ to have infinitely many solutions (α, β) where both α and β are roots of unity?
Roughly, the principle of unlikely intersections predicts that when the intersection of two arithmetic objects is larger than expected there should be an underlying geometric reason.

Example: is it likely for a plane curve V to contain infinitely many points (α, β) where both α and β are roots of unity? Other words: is it likely for a polynomial equation $P(X, Y) = 0$ to have infinitely many solutions (α, β) where both α and β are roots of unity?
Many curves do: the vertical curve \(x = \zeta \) (where \(\zeta \) is a root of unity), or the diagonal \(x = y \), or the curve \(xy = -1 \), etc. **But all these curves are “special”**.

This question was asked by Lang and answered by Ihara, Serre, and Tate. They proved that if \(V \) is such a curve then \(V \) is defined by an equation of the form \(x^m y^n = \zeta \) where \(m, n \in \mathbb{Z} \) and \(\zeta \) is a root of unity.

Geometrically, these curves are “torsion translates of algebraic subgroups of \((\mathbb{C}^*)^2\)”.
Many curves do: the vertical curve $x = \zeta$ (where ζ is a root of unity), or the diagonal $x = y$, or the curve $xy = -1$, etc. **But all these curves are “special”**.

This question was asked by Lang and answered by Ihara, Serre, and Tate. They proved that if V is such a curve then V is defined by an equation of the form $x^m y^n = \zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity.

Geometrically, these curves are “torsion translates of algebraic subgroups of $(\mathbb{C}^*)^2$”.
Many curves do: the vertical curve \(x = \zeta \) (where \(\zeta \) is a root of unity), or the diagonal \(x = y \), or the curve \(xy = -1 \), etc. **But all these curves are “special”**.

This question was asked by Lang and answered by Ihara, Serre, and Tate. They proved that if \(V \) is such a curve then \(V \) is defined by an equation of the form \(x^m y^n = \zeta \) where \(m, n \in \mathbb{Z} \) and \(\zeta \) is a root of unity.

Geometrically, these curves are **“torsion translates of algebraic subgroups of \((\mathbb{C}^*)^2\)”**.
The (somewhat vague) principle of unlikely intersections includes several of the most spectacular diophantine results recently.

We will discuss these examples and their dynamical analogues:

- the Manin-Mumford Conjecture (Raynaud’s Theorem),
- André’s result which is part of the more general André-Oort Conjecture,
- the Bombieri-Masser-Zannier Bounded Height Conjecture (Habegger’s Theorem),
- and, if time permits, the Mordell-Lang Conjecture (proved by Faltings, McQuillan, and Vojta).
The (somewhat vague) principle of unlikely intersections includes several of the most spectacular diophantine results recently.

We will discuss these examples and their dynamical analogues:

- the Manin-Mumford Conjecture (Raynaud’s Theorem),
- André’s result which is part of the more general André-Oort Conjecture,
- the Bombieri-Masser-Zannier Bounded Height Conjecture (Habegger’s Theorem),
- and, if time permits, the Mordell-Lang Conjecture (proved by Faltings, McQuillan, and Vojta).
The (somewhat vague) principle of unlikely intersections includes several of the most spectacular diophantine results recently.

We will discuss these examples and their dynamical analogues:

- the Manin-Mumford Conjecture (Raynaud’s Theorem),
- André’s result which is part of the more general André-Oort Conjecture,
- the Bombieri-Masser-Zannier Bounded Height Conjecture (Habegger’s Theorem),
- and, if time permits, the Mordell-Lang Conjecture (proved by Faltings, McQuillan, and Vojta).
The (somewhat vague) principle of unlikely intersections includes several of the most spectacular diophantine results recently.

We will discuss these examples and their dynamical analogues:

- the Manin-Mumford Conjecture (Raynaud’s Theorem),
- André’s result which is part of the more general André-Oort Conjecture,
- the Bombieri-Masser-Zannier Bounded Height Conjecture (Habegger’s Theorem),
- and, if time permits, the Mordell-Lang Conjecture (proved by Faltings, McQuillan, and Vojta).
The (somewhat vague) principle of unlikely intersections includes several of the most spectacular diophantine results recently.

We will discuss these examples and their dynamical analogues:

- the Manin-Mumford Conjecture (Raynaud’s Theorem),
- André’s result which is part of the more general André-Oort Conjecture,
- the Bombieri-Masser-Zannier Bounded Height Conjecture (Habegger’s Theorem),
- and, if time permits, the Mordell-Lang Conjecture (proved by Faltings, McQuillan, and Vojta).
Let ϕ be a self-map of a set S and let V be a subset of S. We say that:

(i) V is ϕ-periodic (or simply periodic) if $\phi^n(V) = V$ for some $n \in \mathbb{N}$.

(ii) V is ϕ-preperiodic (or simply preperiodic) if some $\phi^m(V)$ is periodic.
Let ϕ be a self-map of a set S and let V be a subset of S. We say that:

(i) V is ϕ-periodic (or simply periodic) if $\phi^n(V) = V$ for some $n \in \mathbb{N}$.

(ii) V is ϕ-preperiodic (or simply preperiodic) if some $\phi^m(V)$ is periodic.
Let ϕ be a self-map of a set S and let V be a subset of S. We say that:

(i) V is ϕ-periodic (or simply periodic) if $\phi^n(V) = V$ for some $n \in \mathbb{N}$.

(ii) V is ϕ-preperiodic (or simply preperiodic) if some $\phi^m(V)$ is periodic.
How to come up with dynamical analogues?

- Many important diophantine results involve abelian varieties (or tori, or more generally semiabelian varieties) and the multiplication-by-\(d\) maps.

- Naively, replace the above data by a variety and a morphism to itself. Torsion points \(\leftrightarrow\) preperiodic points, (torsion translates of) algebraic subgroups \(\leftrightarrow\) preperiodic subvarieties, etc.

But sometimes this naive approach does not work...
How to come up with dynamical analogues?

Many important diophantine results involve abelian varieties (or tori, or more generally semiabelian varieties) and the multiplication-by-d maps.

Naively, replace the above data by a variety and a morphism to itself. Torsion points \leftrightarrow preperiodic points, (torsion translates of) algebraic subgroups \leftrightarrow preperiodic subvarieties, etc.

But sometimes this naive approach does not work...
How to come up with dynamical analogues?

- Many important diophantine results involve abelian varieties (or tori, or more generally semiabelian varieties) and the multiplication-by-d maps.
- Naively, replace the above data by a variety and a morphism to itself. Torsion points \leftrightarrow preperiodic points, (torsion translates of) algebraic subgroups \leftrightarrow preperiodic subvarieties, etc.

But sometimes this naive approach does not work...
How to come up with dynamical analogues?

- Many important diophantine results involve abelian varieties (or tori, or more generally semiabelian varieties) and the multiplication-by-\(d\) maps.
- Naively, replace the above data by a variety and a morphism to itself. Torsion points \(\leftrightarrow\) preperiodic points, (torsion translates of) algebraic subgroups \(\leftrightarrow\) preperiodic subvarieties, etc.

But sometimes this naive approach does not work...
Bottom line:

- This dynamical analogy program is still a major work-in-progress. There are many interesting questions and phenomena to be discovered.

- Goal: everyone can pick their favorite diophantine result and formulates a dynamical analogue.
Bottom line:

- This dynamical analogy program is still a major work-in-progress. There are many interesting questions and phenomena to be discovered.

- Goal: everyone can pick their favorite diophantine result and formulates a dynamical analogue.
References:

\(\mathbb{A}^n \): the affine space of dimension \(n \) and \(\mathbb{G}_m^n \): the torus of dimension \(n \). Over \(\mathbb{C} \), think of these as \(\mathbb{C}^n \) and \((\mathbb{C}^\ast)^n\).

The multiplication-by-\(d \) map of \(\mathbb{G}_m^n \) is:

\[
(x_1, \ldots, x_n) \mapsto (x_1^d, \ldots, x_n^d).
\]

Given diophantine properties of \(\mathbb{G}_m^n \), try to formulate analogues for the dynamics of \(\phi : \mathbb{A}^n \to \mathbb{A}^n \) given by:

\[
(x_1, \ldots, x_n) \mapsto (f_1(x_1), \ldots, f_n(x_n))
\]

where \(f_1, \ldots, f_n \in \mathbb{C}[t] \) having degree \(d \).
\(\mathbb{A}^n \): the affine space of dimension \(n \) and \(\mathbb{G}_m^n \): the torus of dimension \(n \). Over \(\mathbb{C} \), think of these as \(\mathbb{C}^n \) and \((\mathbb{C}^*)^n \).

The multiplication-by-\(d \) map of \(\mathbb{G}_m^n \) is:

\[
(x_1, \ldots, x_n) \mapsto (x_1^d, \ldots, x_n^d).
\]

Given diophantine properties of \(\mathbb{G}_m^n \), try to formulate analogues for the dynamics of \(\phi : \mathbb{A}^n \to \mathbb{A}^n \) given by:

\[
(x_1, \ldots, x_n) \mapsto (f_1(x_1), \ldots, f_n(x_n))
\]

where \(f_1, \ldots, f_n \in \mathbb{C}[t] \) having degree \(d \).
\mathbb{A}^n: the affine space of dimension n and \mathbb{G}_m^n: the torus of dimension n. Over \mathbb{C}, think of these as \mathbb{C}^n and $(\mathbb{C}^*)^n$.

The multiplication-by-d map of \mathbb{G}_m^n is:

$$(x_1, \ldots, x_n) \mapsto (x_1^d, \ldots, x_n^d).$$

Given diophantine properties of \mathbb{G}_m^n, try to formulate analogues for the dynamics of $\phi : \mathbb{A}^n \to \mathbb{A}^n$ given by:

$$(x_1, \ldots, x_n) \mapsto (f_1(x_1), \ldots, f_n(x_n))$$

where $f_1, \ldots, f_n \in \mathbb{C}[t]$ having degree d.
Manin-Mumford Conjecture (for curves): if a curve V in an abelian variety A defined over \mathbb{C} contains infinitely many torsion points then V is a torsion translate of an algebraic subgroup.

This is proved by Raynaud. Similar question for tori:

Lang’s Question: is it true that if a curve V in \mathbb{G}_m^2 contains infinitely many torsion points then it must be a torsion translate of an algebraic subgroup?

Ihara, Serre, and Tate give a positive answer. Moreover, we can show that every such torsion translate is given by the equation $x^m y^n = \zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity.
Manin-Mumford Conjecture (for curves): if a curve V in an abelian variety A defined over \mathbb{C} contains infinitely many torsion points then V is a torsion translate of an algebraic subgroup.

This is proved by Raynaud. Similar question for tori:

Lang’s Question: is it true that if a curve V in \mathbb{G}_m^2 contains infinitely many torsion points then it must be a torsion translate of an algebraic subgroup?

Ihara, Serre, and Tate give a positive answer. Moreover, we can show that every such torsion translate is given by the equation $x^m y^n = \zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity.
Manin-Mumford Conjecture (for curves): if a curve V in an abelian variety A defined over \mathbb{C} contains infinitely many torsion points then V is a torsion translate of an algebraic subgroup.

This is proved by Raynaud. Similar question for tori:

Lang’s Question: is it true that if a curve V in \mathbb{G}_m^2 contains infinitely many torsion points then it must be a torsion translate of an algebraic subgroup?

Ihara, Serre, and Tate give a positive answer. Moreover, we can show that every such torsion translate is given by the equation $x^m y^n = \zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity.
Manin-Mumford Conjecture (for curves): if a curve V in an abelian variety A defined over \mathbb{C} contains infinitely many torsion points then V is a torsion translate of an algebraic subgroup.

This is proved by Raynaud. Similar question for tori:

Lang’s Question: is it true that if a curve V in \mathbb{G}_m^2 contains infinitely many torsion points then it must be a torsion translate of an algebraic subgroup?

Ihara, Serre, and Tate give a positive answer. Moreover, we can show that every such torsion translate is given by the equation $x^m y^n = \zeta$ where $m, n \in \mathbb{Z}$ and ζ is a root of unity.
A naive dynamical analogue: let X be a variety over \mathbb{C}, V a curve in X, and $\phi: X \to X$ a morphism. If V contains infinitely many preperiodic points, is it true that V must be preperiodic?

A variant of this analogue was asked by Shou-wu Zhang around 1995. Ghioca, Tucker, and Zhang found a counter-example and proposed a modified version in 2011. They note that even the below example is complicated:

Example: $X = \mathbb{A}^2$ and $\phi(x, y) = (f(x), g(y))$ with $f, g \in \mathbb{C}[t]$ having degree $d > 1$. Then ask for curves V in X having infinitely many points (a, b) where a is f-preperiodic and b is g-preperiodic. The case $f(t) = g(t) = t^d$ is Lang’s question.
A naive dynamical analogue: let X be a variety over \mathbb{C}, V a curve in X, and $\phi : X \to X$ a morphism. If V contains infinitely many preperiodic points, is it true that V must be preperiodic?

A variant of this analogue was asked by Shou-wu Zhang around 1995. Ghioca, Tucker, and Zhang found a counter-example and proposed a modified version in 2011. They note that even the below example is complicated:

Example: $X = \mathbb{A}^2$ and $\phi(x, y) = (f(x), g(y))$ with $f, g \in \mathbb{C}[t]$ having degree $d > 1$. Then ask for curves V in X having infinitely many points (a, b) where a is f-preperiodic and b is g-preperiodic. The case $f(t) = g(t) = t^d$ is Lang’s question.
A naive dynamical analogue: let X be a variety over \mathbb{C}, V a curve in X, and $\phi: X \to X$ a morphism. If V contains infinitely many preperiodic points, is it true that V must be preperiodic?

A variant of this analogue was asked by Shou-wu Zhang around 1995. Ghioca, Tucker, and Zhang found a counter-example and proposed a modified version in 2011. They note that even the below example is complicated:

Example: $X = \mathbb{A}^2$ and $\phi(x, y) = (f(x), g(y))$ with $f, g \in \mathbb{C}[t]$ having degree $d > 1$. Then ask for curves V in X having infinitely many points (a, b) where a is f-preperiodic and b is g-preperiodic. The case $f(t) = g(t) = t^d$ is Lang’s question.
Early this year, we are able to prove:

Theorem (Ghioca-N.-Ye, 2016)

Let \(f, g \in \mathbb{C}[t] \) having degree \(d > 1 \), let \(X = \mathbb{A}^2 \), and let \(\phi(x, y) = (f(x), g(y)) \). If \(V \) is an irreducible curve in \(X \) having infinitely many \(\phi \)-preperiodic points then \(V \) is \(\phi \)-preperiodic.

Let’s prove the theorem in the special case when \(C = \Delta \) is the diagonal in \(\mathbb{A}^2 \).
Early this year, we are able to prove:

Theorem (Ghioca-N.-Ye, 2016)

Let \(f, g \in \mathbb{C}[t] \) having degree \(d > 1 \), let \(X = \mathbb{A}^2 \), and let \(\phi(x, y) = (f(x), g(y)) \). If \(V \) is an irreducible curve in \(X \) having infinitely many \(\phi \)-preperiodic points then \(V \) is \(\phi \)-preperiodic.

Let’s prove the theorem in the special case when \(C = \Delta \) is the diagonal in \(\mathbb{A}^2 \).
For every polynomial P with $\deg(P) > 1$, we can associate a canonical measure μ_P on \mathbb{C} supported by the Julia set J_P.

Example: if $P(t) = t^d$ then J_P is the unit circle and μ_P is its Haar measure.
For every polynomial P with $\deg(P) > 1$, we can associate a canonical measure μ_P on \mathbb{C} supported by the Julia set J_P.

Example: if $P(t) = t^d$ then J_P is the unit circle and μ_P is its Haar measure.
Equidistribution theorem: if $P \in \bar{\mathbb{Q}}[t]$ then the Galois orbits of preperiodic points are equidistributed with respect to μ_P.

Example: consider $P(t) = t^d$. Equidistribution says that as $N \to \infty$, the set of primitive N-th roots of unity is equidistributed with respect to the Haar measure on the unit circle.
Equidistribution theorem: if $P \in \bar{\mathbb{Q}}[t]$ then the Galois orbits of preperiodic points are equidistributed with respect to μ_P.

Example: consider $P(t) = t^d$. Equidistribution says that as $N \to \infty$, the set of primitive N-th roots of unity is equidistributed with respect to the Haar measure on the unit circle.
Proof of our theorem when $C = \Delta$ is the diagonal in \mathbb{A}^2:

* By specialization, assume $f(t), g(t) \in \bar{\mathbb{Q}}[t]$.

* Since $C = \Delta$ has infinitely many ϕ-preperiodic points, there are infinitely many $\alpha \in \mathbb{C}$ that is both f-preperiodic and g-preperiodic.

* By equidistribution: get $\mu_f = \mu_g$, and hence $J_f = J_g$. (It is an overkill to use equidistribution here when $C = \Delta$; but we need it for general C.)

* If both f and g are linearly conjugate to X^d, reduce to Lang’s question (Ihara-Serre-Tate result).

* Otherwise, $J_f = J_g$ implies f and g have a common iterate. Hence Δ is (pre)periodic under ϕ, qed.
Proof of our theorem when $C = \Delta$ is the diagonal in \mathbb{A}^2:

* By specialization, assume $f(t), g(t) \in \overline{\mathbb{Q}}[t]$.

* Since $C = \Delta$ has infinitely many ϕ-preperiodic points, there are infinitely many $\alpha \in \mathbb{C}$ that is both f-preperiodic and g-preperiodic.

* By equidistribution: get $\mu_f = \mu_g$, and hence $J_f = J_g$. (It is an overkill to use equidistribution here when $C = \Delta$; but we need it for general C.)

* If both f and g are linearly conjugate to X^d, reduce to Lang’s question (Ihara-Serre-Tate result).

* Otherwise, $J_f = J_g$ implies f and g have a common iterate. Hence Δ is (pre)periodic under ϕ, qed.
Proof of our theorem when $C = \Delta$ is the diagonal in \mathbb{A}^2:

* By specialization, assume $f(t), g(t) \in \bar{\mathbb{Q}}[t]$.

* Since $C = \Delta$ has infinitely many ϕ-preperiodic points, there are infinitely many $\alpha \in \mathbb{C}$ that is both f-preperiodic and g-preperiodic.

* By equidistribution: get $\mu_f = \mu_g$, and hence $J_f = J_g$. (It is an overkill to use equidistribution here when $C = \Delta$; but we need it for general C.)

* If both f and g are linearly conjugate to X^d, reduce to Lang’s question (Ihara-Serre-Tate result).

* Otherwise, $J_f = J_g$ implies f and g have a common iterate. Hence Δ is (pre)periodic under ϕ, qed.
Proof of our theorem when $C = \Delta$ is the diagonal in \mathbb{A}^2:

- By specialization, assume $f(t), g(t) \in \bar{\mathbb{Q}}[t]$.

- Since $C = \Delta$ has infinitely many ϕ-preperiodic points, there are infinitely many $\alpha \in \mathbb{C}$ that is both f-preperiodic and g-preperiodic.

- By equidistribution: get $\mu_f = \mu_g$, and hence $J_f = J_g$. (It is an overkill to use equidistribution here when $C = \Delta$; but we need it for general C.)

- If both f and g are linearly conjugate to X^d, reduce to Lang’s question (Ihara-Serre-Tate result).

- Otherwise, $J_f = J_g$ implies f and g have a common iterate. Hence Δ is (pre)periodic under ϕ, qed.
Proof of our theorem when $C = \Delta$ is the diagonal in \mathbb{A}^2:

* By specialization, assume $f(t), g(t) \in \overline{\mathbb{Q}}[t]$.

* Since $C = \Delta$ has infinitely many ϕ-preperiodic points, there are infinitely many $\alpha \in \mathbb{C}$ that is both f-preperiodic and g-preperiodic.

* By equidistribution: get $\mu_f = \mu_g$, and hence $J_f = J_g$. (It is an overkill to use equidistribution here when $C = \Delta$; but we need it for general C.)

* If both f and g are linearly conjugate to X^d, reduce to Lang’s question (Ihara-Serre-Tate result).

* Otherwise, $J_f = J_g$ implies f and g have a common iterate. Hence Δ is (pre)periodic under ϕ, qed.
Proof of our theorem when $C = \Delta$ is the diagonal in \mathbb{A}^2:

* By specialization, assume $f(t), g(t) \in \bar{\mathbb{Q}}[t]$.

* Since $C = \Delta$ has infinitely many ϕ-preperiodic points, there are infinitely many $\alpha \in \mathbb{C}$ that is both f-preperiodic and g-preperiodic.

* By equidistribution: get $\mu_f = \mu_g$, and hence $J_f = J_g$. (It is an overkill to use equidistribution here when $C = \Delta$; but we need it for general C.)

* If both f and g are linearly conjugate to X^d, reduce to Lang’s question (Ihara-Serre-Tate result).

* Otherwise, $J_f = J_g$ implies f and g have a common iterate. Hence Δ is (pre)periodic under ϕ, qed.
References:

Only focus on André’s Theorem which is a special case of the much larger André - Oort Conjecture.

Unlike all the other examples that happen inside a semiabelian variety, this result occurs in moduli spaces.

Complex multiplication: E is an elliptic curve (over \mathbb{C}), then:

- there is $\tau \in \mathbb{H}$: the upper half-plane so that $E \cong \mathbb{C}/\Gamma$ for the lattice $\Gamma = \mathbb{Z} \oplus \mathbb{Z}\tau$.

- If τ does not satisfy a quadratic equation with integer coefficients, then $\text{End}(E) = \mathbb{Z}$. Otherwise, $\text{End}(E) = \mathbb{Z}[\tau]$ is an order in an imaginary quadratic field and we say that E has complex multiplication (CM).
Only focus on André’s Theorem which is a special case of the much larger André - Oort Conjecture.

Unlike all the other examples that happen inside a semiabelian variety, this result occurs in moduli spaces.

Complex multiplication: E is an elliptic curve (over \mathbb{C}), then:

- there is $\tau \in \mathbb{H}$: the upper half-plane so that $E \cong \mathbb{C}/\Gamma$ for the lattice $\Gamma = \mathbb{Z} \oplus \mathbb{Z}\tau$.

- If τ does not satisfy a quadratic equation with integer coefficients, then $\text{End}(E) = \mathbb{Z}$. Otherwise, $\text{End}(E) = \mathbb{Z}[\tau]$ is an order in an imaginary quadratic field and we say that E has complex multiplication (CM).
Only focus on **André’s Theorem** which is a special case of the much larger *André - Oort Conjecture*.

Unlike all the other examples that happen inside a semiabelian variety, this result occurs in **moduli spaces**.

Complex multiplication: E is an elliptic curve (over \mathbb{C}), then:

- There is $\tau \in \mathbb{H}$: the upper half-plane so that $E \cong \mathbb{C}/\Gamma$ for the lattice $\Gamma = \mathbb{Z} \oplus \mathbb{Z}\tau$.

- If τ does not satisfy a quadratic equation with integer coefficients, then $\text{End}(E) = \mathbb{Z}$. Otherwise, $\text{End}(E) = \mathbb{Z}[\tau]$ is an order in an imaginary quadratic field and we say that E has complex multiplication (CM).
Only focus on **André’s Theorem** which is a special case of the much larger **André - Oort Conjecture**.

Unlike all the other examples that happen inside a semiabelian variety, this result occurs in **moduli spaces**.

Complex multiplication: E is an elliptic curve (over \mathbb{C}), then:

- there is $\tau \in \mathbb{H}$: the upper half-plane so that $E \cong \mathbb{C}/\Gamma$ for the lattice $\Gamma = \mathbb{Z} \oplus \mathbb{Z}\tau$.

- If τ does not satisfy a quadratic equation with integer coefficients, then $\text{End}(E) = \mathbb{Z}$. Otherwise, $\text{End}(E) = \mathbb{Z}[\tau]$ is an order in an imaginary quadratic field and we say that E has complex multiplication (CM).
There is a function \(j : \mathbb{H} \rightarrow \mathbb{C} \) and \(j(\tau) \) is called the \(j \)-invariant of \(E \). This way, \(\mathbb{C} \) parametrizes elliptic curves (through the \(j \)-invariant).

c \in \mathbb{C} \) is called CM if it is the \(j \)-invariant of a CM elliptic curve.

It is unlikely for a curve in \(\mathbb{C}^2 \) to contain infinitely many points \((c_1, c_2)\) where both \(c_1 \) and \(c_2 \) are CM.

Theorem (André, 1998)

Let \(X \) be an irreducible algebraic curve in \(\mathbb{C}^2 \). Assume \(X \) contains infinitely many points \((c_1, c_2)\) such that both \(c_1 \) and \(c_2 \) are CM. Then \(X \) is either vertical, or horizontal, or defined by a modular polynomial.
There is a function \(j : \mathbb{H} \to \mathbb{C} \) and \(j(\tau) \) is called the \(j \)-invariant of \(E \). This way, \(\mathbb{C} \) parametrizes elliptic curves (through the \(j \)-invariant).

\(c \in \mathbb{C} \) is called CM if it is the \(j \)-invariant of a CM elliptic curve.

It is unlikely for a curve in \(\mathbb{C}^2 \) to contain infinitely many points \((c_1, c_2)\) where both \(c_1 \) and \(c_2 \) are CM.

\textbf{Theorem (André, 1998)}

Let \(X \) be an irreducible algebraic curve in \(\mathbb{C}^2 \). Assume \(X \) contains infinitely many points \((c_1, c_2)\) such that both \(c_1 \) and \(c_2 \) are CM. Then \(X \) is either vertical, or horizontal, or defined by a modular polynomial.
There is a function $j : \mathbb{H} \to \mathbb{C}$ and $j(\tau)$ is called the j-invariant of E. This way, \mathbb{C} parametrizes elliptic curves (through the j-invariant).

c $\in \mathbb{C}$ is called CM if it is the j-invariant of a CM elliptic curve.

It is unlikely for a curve in \mathbb{C}^2 to contain infinitely many points (c_1, c_2) where both c_1 and c_2 are CM.

Theorem (André, 1998)

Let X be an irreducible algebraic curve in \mathbb{C}^2. Assume X contains infinitely many points (c_1, c_2) such that both c_1 and c_2 are CM. Then X is either vertical, or horizontal, or defined by a modular polynomial.
There is a function $j : \mathbb{H} \to \mathbb{C}$ and $j(\tau)$ is called the j-invariant of E. This way, \mathbb{C} parametrizes elliptic curves (through the j-invariant).

$c \in \mathbb{C}$ is called CM if it is the j-invariant of a CM elliptic curve.

It is unlikely for a curve in \mathbb{C}^2 to contain infinitely many points (c_1, c_2) where both c_1 and c_2 are CM.

Theorem (André, 1998)

Let X be an irreducible algebraic curve in \mathbb{C}^2. Assume X contains infinitely many points (c_1, c_2) such that both c_1 and c_2 are CM. Then X is either vertical, or horizontal, or defined by a modular polynomial.
A dynamical analogue?

Fix $d \geq 2$. Which rational functions inside the moduli space of rational functions of degree d should play the role of CM elliptic curves inside the moduli space of elliptic curves?

A possible answer: post-critically finite (PCF) functions which mean functions for which every critical point is preperiodic. Example: $f_c(t) = t^d + c$ is PCF iff 0 is preperiodic.
A dynamical analogue?

Fix $d \geq 2$. Which rational functions inside the moduli space of rational functions of degree d should play the role of CM elliptic curves inside the moduli space of elliptic curves?

A possible answer: post-critically finite (PCF) functions which mean functions for which every critical point is preperiodic. Example: $f_c(t) = t^d + c$ is PCF iff 0 is preperiodic.
A dynamical analogue?

Fix $d \geq 2$. Which rational functions inside the moduli space of rational functions of degree d should play the role of CM elliptic curves inside the moduli space of elliptic curves?

A possible answer: **post-critically finite (PCF) functions** which mean functions for which **every critical point is preperiodic**. Example: $f_c(t) = t^d + c$ is PCF iff 0 is preperiodic.
Why PCF functions \leftrightarrow CM elliptic curves? A heuristic answer:

Serre’s Open Image Theorem: the image of the ℓ-adic Galois representation associated to an elliptic curve is large unless the curve is CM.

Given a rational function ϕ of degree d, we can associate an “arboreal Galois representation” and we can prove that if ϕ is PCF then the image of the above representation is smaller than expected.
Why PCF functions ↔ CM elliptic curves? A heuristic answer: Serre’s Open Image Theorem: the image of the ℓ-adic Galois representation associated to an elliptic curve is large unless the curve is CM.

Given a rational function ϕ of degree d, we can associate an “arboreal Galois representation” and we can prove that if ϕ is PCF then the image of the above representation is smaller than expected.
Why PCF functions ↔ CM elliptic curves? A heuristic answer:

Serre’s Open Image Theorem: the image of the \(\ell\)-adic Galois representation associated to an elliptic curve is large unless the curve is CM.

Given a rational function \(\phi\) of degree \(d\), we can associate an “arboreal Galois representation” and we can prove that if \(\phi\) is PCF then the image of the above representation is smaller than expected.
Fix $d \geq 2$. Consider the family of polynomials $\{t^d + c\}$ parametrized by $c \in \mathbb{C}$. Our result is an analogue of André’s Theorem mentioned previously:

Theorem (Ghioca, Krieger, Ye, and N., 2015)

Let X be an irreducible algebraic curve in \mathbb{C}^2. Assume X contains infinitely many points (c_1, c_2) such that both $t^d + c_1$ and $t^d + c_2$ are PCF. Then X is either vertical, or horizontal, or given by the equation $y = \zeta x$ where ζ is a $(d - 1)$-th root of unity.

This theorem establishes a special case of a conjecture by Baker and DeMarco.
Fix $d \geq 2$. Consider the family of polynomials $\{t^d + c\}$ parametrized by $c \in \mathbb{C}$. Our result is an analogue of André’s Theorem mentioned previously:

Theorem (Ghioca, Krieger, Ye, and N., 2015)

Let X be an irreducible algebraic curve in \mathbb{C}^2. Assume X contains infinitely many points (c_1, c_2) such that both $t^d + c_1$ and $t^d + c_2$ are PCF. Then X is either vertical, or horizontal, or given by the equation $y = \zeta x$ where ζ is a $(d - 1)$-th root of unity.

This theorem establishes a special case of a conjecture by Baker and DeMarco.
Fix $d \geq 2$. Consider the family of polynomials $\{t^d + c\}$ parametrized by $c \in \mathbb{C}$. Our result is an analogue of André’s Theorem mentioned previously:

Theorem (Ghioca, Krieger, Ye, and N., 2015)

Let X be an irreducible algebraic curve in \mathbb{C}^2. Assume X contains infinitely many points (c_1, c_2) such that both $t^d + c_1$ and $t^d + c_2$ are PCF. Then X is either vertical, or horizontal, or given by the equation $y = \zeta x$ where ζ is a $(d - 1)$-th root of unity.

This theorem establishes a special case of a conjecture by Baker and DeMarco.
References:

There is an explicit function

\[h : \mathbb{Q} \to \mathbb{R}^+ \]

called the absolute logarithmic Weil height.

Example: If \(\frac{a}{b} \in \mathbb{Q} \) is in lowest terms then

\[h(a/b) = \log \max\{|a|, |b|\}. \]
There is an explicit function

\[h : \bar{\mathbb{Q}} \rightarrow \mathbb{R}^+ \]

called the absolute logarithmic Weil height.

Example: If \(\frac{a}{b} \in \mathbb{Q} \) is in lowest terms then
\[
h(a/b) = \log \max\{|a|, |b|\}.
\]
$S \subseteq \bar{\mathbb{Q}}^n$ is said to have \textit{bounded height} if the function $S \to \mathbb{R}^+$ defined by $(x_1, \ldots, x_n) \mapsto h(x_1) + \ldots + h(x_n)$ is bounded.

Back to Lang’s question, think of torsion points on a curve $V \subset \mathbb{G}^2_m$ as:

$$V \cap (\text{all algebraic subgroups of codimension 2})$$

What if we intersect V with all subgroups of codimension 1? This intersection should be \textit{infinite}, but can it \textit{remain small in some sense}?
$S \subseteq \tilde{\mathbb{Q}}^n$ is said to have *bounded height* if the function $S \to \mathbb{R}^+$ defined by $(x_1, \ldots, x_n) \mapsto h(x_1) + \ldots + h(x_n)$ is bounded.

Back to Lang's question, think of torsion points on a curve $V \subset \mathbb{G}_m^2$ as:

$$V \cap (\text{all algebraic subgroups of codimension } 2)$$

What if we intersect V with all subgroups of codimension 1? This intersection should be *infinite*, but can it *remain small* in some sense?
$S \subseteq \bar{\mathbb{Q}}^n$ is said to have \textit{bounded height} if the function $S \to \mathbb{R}^+$ defined by $(x_1, \ldots, x_n) \mapsto h(x_1) + \ldots + h(x_n)$ is bounded.

Back to Lang’s question, think of torsion points on a curve $V \subset \mathbb{G}_m^2$ as:

$$V \cap (\text{all algebraic subgroups of codimension } 2)$$

\textbf{What if we intersect V with all subgroups of codimension 1?} This intersection should be \textit{infinite}, but can it \textit{remain small in some sense}?
Answer: this intersection has **bounded height unless** \(V \) is “special”. Work over \(\bar{\mathbb{Q}} \) (so think of \(\mathbb{G}_m^2 \) as \((\bar{\mathbb{Q}}^*)^2 \)).

Theorem (Bombieri-Masser-Zannier, 1999)

Let \(V \) be a curve in \(\mathbb{G}_m^2 \) defined over \(\bar{\mathbb{Q}} \). If \(V \) is not a translate of an algebraic subgroup then

\[
V \cap \bigcup_H \mathcal{H}
\]

has bounded height where \(H \) ranges over all algebraic subgroups of codimension 1.
Answer: this intersection has **bounded height unless** V is “special”. Work over \bar{Q} (so think of G_m^2 as $(\bar{Q}^*)^2$).

Theorem (Bombieri-Masser-Zannier, 1999)

Let V be a curve in G_m^2 defined over \bar{Q}. If V is not a translate of an algebraic subgroup then

$$V \cap \bigcup_{H} H$$

has bounded height where H ranges over all algebraic subgroups of codimension 1.
Now look for an analogous result for the dynamics of \(\phi : \mathbb{A}^2 \to \mathbb{A}^2 \) defined by \(\phi(x, y) = (f(x), g(y)) \) with \(f, g \in \bar{\mathbb{Q}}[t] \) having degree \(d \geq 2 \).

Theorem (N., 2013)

Let \(V \) be a curve in \(\mathbb{A}^2 \) defined over \(\bar{\mathbb{Q}} \). Assume that \(V \) is not \(\phi \)-periodic and the projection from \(V \) to each coordinate \(\mathbb{A}^1 \) is non-constant. Then

\[
\bigcap_{H} V \cap \bigcup_{H} H
\]

has bounded height where \(H \) ranges over all \(\phi \)-periodic hypersurfaces.
Now look for an analogous result for the dynamics of
\(\phi : \mathbb{A}^2 \rightarrow \mathbb{A}^2 \) defined by
\[\phi(x, y) = (f(x), g(y)) \]
with \(f, g \in \bar{\mathbb{Q}}[t] \) having degree \(d \geq 2 \).

Theorem (N., 2013)

Let \(V \) be a curve in \(\mathbb{A}^2 \) defined over \(\bar{\mathbb{Q}} \). Assume that \(V \) is not \(\phi \)-periodic and the projection from \(V \) to each coordinate \(\mathbb{A}^1 \) is non-constant. Then
\[
V \cap \bigcup_{H} H
\]
has bounded height where \(H \) ranges over all \(\phi \)-periodic hypersurfaces.
That’s all about **curves intersecting subgroups of codimension** 1. How about higher dimensional subvarieties V?

Now V is a subvariety of \mathbb{G}_m^n with $r := \dim(V)$, can the set $V \cap$ all algebraic subgroups of codimension r have bounded height?

No if, for example, V contains a curve that also lies in an algebraic subgroup of codim r.
That’s all about curves intersecting subgroups of codimension 1. How about higher dimensional subvarieties V?

Now V is a subvariety of \mathbb{G}_m^n with $r := \dim(V)$, can the set $V \cap \text{all algebraic subgroups of codimension } r$ have bounded height?

No if, for example, V contains a curve that also lies in an algebraic subgroup of codim r.
That’s all about **curves intersecting subgroups of codimension** 1. How about higher dimensional subvarieties \(V \)?

Now \(V \) is a subvariety of \(\mathbb{G}_m^n \) with \(r := \dim(V) \), can the set

\[V \cap \text{all algebraic subgroups of codimension } r \]

have bounded height?

No if, for example, \(V \) contains a curve that also lies in an algebraic subgroup of codim \(r \).
This problem turns out to be delicate. After a series of papers, Bombieri, Masser, and Zannier come up with a subset V^{oa} of V by removing its “anomalous” subvarieties, prove a structure theorem, and formulate a bounded height conjecture. Then Habegger proves this conjecture.

Theorem (Bombieri-Masser-Zannier, Habegger, 2009)

Let $V \subseteq \mathbb{G}_m^n$ be a subvariety of dimension r defined over $\bar{\mathbb{Q}}$.

- **Structure Theorem (BMZ):** V^{oa} is Zariski open in V.

- **Bounded Height Theorem (Habegger):** the set $V^{oa} \cap \bigcup H$ has bounded height where H ranges over all subgroups of codimension r.
This problem turns out to be delicate. After a series of papers, Bombieri, Masser, and Zannier come up with a subset V^{oa} of V by removing its “anomalous” subvarieties, prove a structure theorem, and formulate a bounded height conjecture. Then Habegger proves this conjecture.

Theorem (Bombieri-Masser-Zannier, Habegger, 2009)

Let $V \subseteq \mathbb{G}_m^n$ be a subvariety of dimension r defined over $\bar{\mathbb{Q}}$.

- **Structure Theorem** (BMZ): V^{oa} is Zariski open in V.
- **Bounded Height Theorem** (Habegger): the set $V^{oa} \cap \bigcup H$ has bounded height where H ranges over all subgroups of codimension r.
Back to dynamics:

\[\phi : \mathbb{A}^n \rightarrow \mathbb{A}^n \] \quad with \quad \phi(x_1, \ldots, x_n) = (f_1(x_1), \ldots, f_n(x_n)) \] where each \(f_i \in \bar{\mathbb{Q}}[t] \) has degree \(d \geq 2 \).

Let \(V \) be a subvariety of \(\mathbb{A}^n \) defined over \(\bar{\mathbb{Q}} \) and dimension \(r := \dim(V) \). We can define the analogue \(V^{oa}_\phi \) of the set \(V^{oa} \) by Bombieri-Masser-Zannier and prove:

Theorem (Ghioca-N., 2014)

- **Structure Theorem**: \(V^{oa}_\phi \) is Zariski open in \(V \).
- **Bounded Height Theorem**: the set \(V^{oa}_\phi \cap \bigcup H \) has bounded height where \(H \) ranges over all \(\phi \)-periodic subvarieties of codimension \(r \).
Back to dynamics:

\[\phi : \mathbb{A}^n \to \mathbb{A}^n \text{ with } \phi(x_1, \ldots, x_n) = (f_1(x_1), \ldots, f_n(x_n)) \]\n
where each \(f_i \in \overline{\mathbb{Q}}[t] \) has degree \(d \geq 2 \).

Let \(V \) be a subvariety of \(\mathbb{A}^n \) defined over \(\overline{\mathbb{Q}} \) and dimension \(r := \dim(V) \). We can define the analogue \(V^{\text{oa}} \) of the set \(V^{\text{oa}} \) by Bombieri-Masser-Zannier and prove:

Theorem (Ghioca-N., 2014)

- **Structure Theorem**: \(V^{\text{oa}}_\phi \) is Zariski open in \(V \).
- **Bounded Height Theorem**: the set \(V^{\text{oa}}_\phi \cap \bigcup_{H} H \) has bounded height where \(H \) ranges over all \(\phi \)-periodic subvarieties of codimension \(r \).
Back to dynamics:

\[\phi : \mathbb{A}^n \to \mathbb{A}^n \text{ with } \phi(x_1, \ldots, x_n) = (f_1(x_1), \ldots, f_n(x_n)) \text{ where each } f_i \in \overline{\mathbb{Q}}[t] \text{ has degree } d \geq 2. \]

Let \(V \) be a subvariety of \(\mathbb{A}^n \) defined over \(\overline{\mathbb{Q}} \) and dimension \(r := \dim(V) \). We can define the analogue \(V_{\phi}^{oa} \) of the set \(V^{oa} \) by Bombieri-Masser-Zannier and prove:

Theorem (Ghioca-N., 2014)

- **Structure Theorem**: \(V_{\phi}^{oa} \) is Zariski open in \(V \).
- **Bounded Height Theorem**: the set \(V_{\phi}^{oa} \cap \bigcup H \) has bounded height where \(H \) ranges over all \(\phi \)-periodic subvarieties of codimension \(r \).
Back to dynamics:

\[\phi : \mathbb{A}^n \to \mathbb{A}^n \text{ with } \phi(x_1, \ldots, x_n) = (f_1(x_1), \ldots, f_n(x_n)) \text{ where each } f_i \in \overline{\mathbb{Q}}[t] \text{ has degree } d \geq 2. \]

Let \(V \) be a subvariety of \(\mathbb{A}^n \) defined over \(\overline{\mathbb{Q}} \) and dimension \(r := \dim(V) \). We can define the analogue \(V^{oa}_\phi \) of the set \(V^{oa} \) by Bombieri-Masser-Zannier and prove:

Theorem (Ghioca-N., 2014)

- **Structure Theorem:** \(V^{oa}_\phi \) is Zariski open in \(V \).
- **Bounded Height Theorem:** the set \(V^{oa}_\phi \cap \bigcup H \) has bounded height where \(H \) ranges over all \(\phi \)-periodic subvarieties of codimension \(r \).
References:

Mordell-Lang Conjecture: if V is a subvariety of a semiabelian variety A defined over \mathbb{C} and Γ is a finite rank subgroup of A then $V \cap \Gamma$ is a finite union of translates of algebraic subgroups of A.

It is proved by Faltings, McQuillan, and Vojta.

It implies the famous Mordell Conjecture: if V is a curve of genus $g > 1$ defined over a number field K then $V(K)$ is finite. Why? Embed V into its Jacobian A, the group $\Gamma := A(K)$ is finitely generated, hence $V(K) = V \cap \Gamma$ is a finite union of translates of algebraic subgroups. Since $\dim(V) = 1$ and V is not an elliptic curve, such algebraic subgroups are points. So $V(K)$ is finite, qed.
Mordell-Lang Conjecture: if V is a subvariety of a semiabelian variety A defined over \mathbb{C} and Γ is a finite rank subgroup of A then $V \cap \Gamma$ is a finite union of translates of algebraic subgroups of A.

It is proved by Faltings, McQuillan, and Vojta.

It implies the famous **Mordell Conjecture**: if V is a curve of genus $g > 1$ defined over a number field K then $V(K)$ is finite. Why? Embed V into its Jacobian A, the group $\Gamma := A(K)$ is finitely generated, hence $V(K) = V \cap \Gamma$ is a finite union of translates of algebraic subgroups. Since $\text{dim}(V) = 1$ and V is not an elliptic curve, such algebraic subgroups are points. So $V(K)$ is finite, qed.
Mordell-Lang Conjecture: if V is a subvariety of a semiabelian variety A defined over \mathbb{C} and Γ is a finite rank subgroup of A then $V \cap \Gamma$ is a finite union of translates of algebraic subgroups of A.

It is proved by Faltings, McQuillan, and Vojta.

It implies the famous Mordell Conjecture: if V is a curve of genus $g > 1$ defined over a number field K then $V(K)$ is finite. Why? Embed V into its Jacobian A, the group $\Gamma := A(K)$ is finitely generated, hence $V(K) = V \cap \Gamma$ is a finite union of translates of algebraic subgroups. Since $\dim(V) = 1$ and V is not an elliptic curve, such algebraic subgroups are points. So $V(K)$ is finite, qed.
Ghioca and Tucker conjecture the following after earlier work of Denis and Bell:

Conjecture (Dynamical Mordell-Lang)

Let V be a subvariety of a variety X over \mathbb{C}, let $P \in X$, and let ϕ be a self-map of X. Then the set

$$\{ n \in \mathbb{N} : \phi^n(P) \in V \}$$

is a finite union of arithmetic progressions.

Why dynamical analogue?

- The “small” subgroup Γ is replaced by the orbit of P.
- Given, say, the arithmetic progression $\{2 + 3k\}_{k \geq 0}$, think of the Zariski closure of $\{\phi^{2+3k}(P)\}_{k \geq 0}$, which is invariant under ϕ^3, as an analogue for a “translate of algebraic subgroup”.

Khoa D. Nguyen

Unlikely Intersections
Ghioca and Tucker conjecture the following after earlier work of Denis and Bell:

Conjecture (Dynamical Mordell-Lang)

Let V be a subvariety of a variety X over \mathbb{C}, let $P \in X$, and let ϕ be a self-map of X. Then the set

$$\{ n \in \mathbb{N} : \phi^n(P) \in V \}$$

is a finite union of arithmetic progressions.

Why dynamical analogue?

- The “small” subgroup Γ is replaced by the orbit of P.
- Given, say, the arithmetic progression $\{2 + 3k\}_{k \geq 0}$, think of the Zariski closure of $\{\phi^{2+3k}(P)\}_{k \geq 0}$, which is invariant under ϕ^3, as an analogue for a “translate of algebraic subgroup”.
Ghioca and Tucker conjecture the following after earlier work of Denis and Bell:

Conjecture (Dynamical Mordell-Lang)

Let V be a subvariety of a variety X over \mathbb{C}, let $P \in X$, and let ϕ be a self-map of X. Then the set

$$\{ n \in \mathbb{N} : \phi^n(P) \in V \}$$

is a finite union of arithmetic progressions.

Why dynamical analogue?

- The “small” subgroup Γ is replaced by the orbit of P.
- Given, say, the arithmetic progression $\{2 + 3k\}_{k \geq 0}$, think of the Zariski closure of $\{\phi^{2+3k}(P)\}_{k \geq 0}$, which is invariant under ϕ^3, as an analogue for a “translate of algebraic subgroup”.

Khoa D. Nguyen

Unlikely Intersections
There are various results by Bell, Ghioca, Tucker, Xie, Zieve, and others supporting this conjecture.

But very little is known about the following **General Dynamical Mordell-Lang Problem** when there are at least two maps acting on X:

Question (General Dynamical Mordell-Lang)

Let X, V, and P be as before. Let f_1, \ldots, f_r be r commuting morphisms from X to itself. When can we conclude that the set

$$\{(n_1, \ldots, n_r) \in \mathbb{N}^r : f_1^{n_1} \circ \ldots \circ f_r^{n_r}(P) \in V\}$$

is a finite union of translates of subsemigroups of \mathbb{N}^r?

Scanlon-Yasufuku: the above set of (n_1, \ldots, n_r) can be very complicated even when X is a torus and each f_i is an endomorphism.
There are various results by Bell, Ghioca, Tucker, Xie, Zieve, and others supporting this conjecture.

But very little is known about the following **General Dynamical Mordell-Lang Problem** when there are at least two maps acting on X:

Question (General Dynamical Mordell-Lang)

Let X, V, and P be as before. Let f_1, \ldots, f_r be r commuting morphisms from X to itself. When can we conclude that the set

$$\{(n_1, \ldots, n_r) \in \mathbb{N}^r : f_1^{n_1} \circ \ldots \circ f_r^{n_r}(P) \in V\}$$

is a finite union of translates of subsemigroups of \mathbb{N}^r?

Scanlon-Yasufuku: the above set of (n_1, \ldots, n_r) can be very complicated even when X is a torus and each f_i is an endomorphism.
There are various results by Bell, Ghioca, Tucker, Xie, Zieve, and others supporting this conjecture.

But very little is known about the following **General Dynamical Mordell-Lang Problem** when there are at least two maps acting on X:

Question (General Dynamical Mordell-Lang)

Let X, V, and P be as before. Let f_1, \ldots, f_r be r commuting morphisms from X to itself. When can we conclude that the set

$$\{(n_1, \ldots, n_r) \in \mathbb{N}^r : f_1^{n_1} \circ \ldots \circ f_r^{n_r}(P) \in V\}$$

is a finite union of translates of subsemigroups of \mathbb{N}^r?

Scanlon-Yasufuku: the above set of (n_1, \ldots, n_r) can be *very complicated* even when X is a torus and each f_i is an endomorphism.
Motivated by work of Ghioca, Tucker, and Zieve, we consider the special case called **Orbit Intersection Problem**:

Question (Orbit Intersection Problem)

Let ϕ_1, \ldots, ϕ_r be (not necessarily commuting) morphisms from X to itself. Let $P_1, \ldots, P_r \in X$ such that P_i is not ϕ_i-preperiodic for every i. When can we conclude that the set

$$\{(n_1, \ldots, n_r) \in \mathbb{N}^r : \phi_1^{n_1}(P_1) = \ldots = \phi_r^{n_r}(P_r)\}$$

is a finite union of sets of the form

$$\{(a_1 k + b_1, \ldots, a_r k + b_r) : k \in \mathbb{N}\}$$

for some $a_1, \ldots, a_r, b_1, \ldots, b_r \in \mathbb{N}_0$?
Motivated by work of Ghioca, Tucker, and Zieve, we consider the special case called **Orbit Intersection Problem**:

Question (Orbit Intersection Problem)

Let ϕ_1, \ldots, ϕ_r be (not necessarily commuting) morphisms from X to itself. Let $P_1, \ldots, P_r \in X$ such that P_i is not ϕ_i-preperiodic for every i. When can we conclude that the set

$$\{(n_1, \ldots, n_r) \in \mathbb{N}^r : \phi_1^{n_1}(P_1) = \ldots = \phi_r^{n_r}(P_r)\}$$

is a finite union of sets of the form

$$\{(a_1 k + b_1, \ldots, a_r k + b_r) : k \in \mathbb{N}\}$$

for some $a_1, \ldots, a_r, b_1, \ldots, b_r \in \mathbb{N}_0$?
The Orbit Intersection Problem is a special case of General DML since:

- Ambient variety X^r, subvariety $V = \Delta$: the diagonal, starting point $P = (P_1, \ldots, P_r)$.
- The r commuting self-maps of X^r are $f_i = (\text{id}, \ldots, \phi_i, \ldots, \text{id})$ (f_i on the i-th factor and identity on other factors) for $1 \leq i \leq r$.

The set $\{(a_1k + b_1, \ldots, a_rk + b_r : k \in \mathbb{N}\}$

- is a singleton when $a_1 = \ldots = a_r = 0$
- will be called an arithmetic progression in \mathbb{N}^r

The problem is trivial if some P_i is ϕ_i-preperiodic.
The Orbit Intersection Problem is a special case of General DML since:

- Ambient variety X^r, subvariety $V = \Delta$: the diagonal, starting point $P = (P_1, \ldots, P_r)$.
- The r commuting self-maps of X^r are $f_i = (\text{id}, \ldots, \phi_i, \ldots, \text{id})$ (f_i on the i-th factor and identity on other factors) for $1 \leq i \leq r$.

The set $\{(a_1k + b_1, \ldots, a_rik + b_r : k \in \mathbb{N}\}$
- is a singleton when $a_1 = \ldots = a_r = 0$
- will be called an arithmetic progression in \mathbb{N}^r

The problem is trivial if some P_i is ϕ_i-preperiodic.
The Orbit Intersection Problem is a special case of General DML since:

- Ambient variety X^r, subvariety $V = \Delta$: the diagonal, starting point $P = (P_1, \ldots, P_r)$.
- The r commuting self-maps of X^r are $f_i = (\text{id}, \ldots, \phi_i, \ldots, \text{id})$ (f_i on the i-th factor and identity on other factors) for $1 \leq i \leq r$.

The set \{(a_1k + b_1, \ldots, a_rk + b_r : k \in \mathbb{N}\}

- is a singleton when $a_1 = \ldots = a_r = 0$
- will be called an arithmetic progression in \mathbb{N}^r

The problem is trivial if some P_i is ϕ_i-preperiodic.
The Orbit Intersection Problem is a special case of General DML since:

- Ambient variety X^r, subvariety $V = \Delta$: the diagonal, starting point $P = (P_1, \ldots, P_r)$.
- The r commuting self-maps of X^r are $f_i = (\text{id}, \ldots, \phi_i, \ldots, \text{id})$ (f_i on the i-th factor and identity on other factors) for $1 \leq i \leq r$.

The set $\{(a_1k + b_1, \ldots, a_rk + b_r : k \in \mathbb{N}\}$

- is a singleton when $a_1 = \ldots = a_r = 0$
- will be called an arithmetic progression in \mathbb{N}^r

The problem is trivial if some P_i is ϕ_i-preperiodic.
The Orbit Intersection Problem is a special case of General DML since:

- Ambient variety X^r, subvariety $V = \Delta$: the diagonal, starting point $P = (P_1, \ldots, P_r)$.
- The r commuting self-maps of X^r are $f_i = (\text{id}, \ldots, \phi_i, \ldots, \text{id})$ (f_i on the i-th factor and identity on other factors) for $1 \leq i \leq r$.

The set $\{(a_1 k + b_1, \ldots, a_r k + b_r : k \in \mathbb{N}\}$

- is a singleton when $a_1 = \ldots = a_r = 0$
 - will be called an arithmetic progression in \mathbb{N}^r

The problem is trivial if some P_i is ϕ_i-preperiodic.
The Orbit Intersection Problem is a special case of General DML since:

- Ambient variety X^r, subvariety $V = \Delta$: the diagonal, starting point $P = (P_1, \ldots, P_r)$.
- The r commuting self-maps of X^r are $f_i = (id, \ldots, \phi_i, \ldots, id)$ (f_i on the i-th factor and identity on other factors) for $1 \leq i \leq r$.

The set $\{ (a_1k + b_1, \ldots, a_rk + b_r : k \in \mathbb{N} \}$

- is a singleton when $a_1 = \ldots = a_r = 0$
- will be called an *arithmetic progression in* \mathbb{N}^r

The problem is trivial if some P_i is ϕ_i-preperiodic.
The Orbit Intersection Problem is a special case of General DML since:

- Ambient variety X^r, subvariety $V = \Delta$: the diagonal, starting point $P = (P_1, \ldots, P_r)$.
- The r commuting self-maps of X^r are $f_i = (\text{id}, \ldots, \phi_i, \ldots, \text{id})$ (f_i on the i-th factor and identity on other factors) for $1 \leq i \leq r$.

The set $\{(a_1k + b_1, \ldots, a_rk + b_r : k \in \mathbb{N}\}$

- is a singleton when $a_1 = \ldots = a_r = 0$
- will be called an *arithmetic progression in* \mathbb{N}^r

The problem is trivial if some P_i is ϕ_i-preperiodic.
We are able to solve the Orbit Intersection Problem for **linear spaces** and **semiabelian varieties**:

For linear spaces ($X = \mathbb{A}^N$, each ϕ_i is an affine transformation):

Theorem (Ghioca-N., 2016)

Let $r, N \in \mathbb{N}$ with $r \geq 2$. For $1 \leq i \leq r$, let $\phi_i : \mathbb{C}^N \to \mathbb{C}^N$ be an affine transformation which means there is an $N \times N$-matrix $A_i \in M_N(\mathbb{C})$ and a vector $v_i \in \mathbb{C}^N$ such that $\phi_i(x) = A_i x + v_i$ for every $x \in \mathbb{C}^N$. For every i, let $P_i \in \mathbb{C}^N$ that is not ϕ_i-preperiodic. If none of the eigenvalues of A_i is a root of unity for every i then

$$\{(n_1, \ldots, n_r) \in \mathbb{N}^r : \phi_1^{n_1}(P_1) = \ldots = \phi_r^{n_r}(P_r)\}$$

is a finite union of arithmetic progressions in \mathbb{N}^r.
We are able to solve the Orbit Intersection Problem for **linear spaces** and **semiabelian varieties**:
For linear spaces ($X = \mathbb{A}^N$, each ϕ_i is an affine transformation):

Theorem (Ghioca-N., 2016)

Let $r, N \in \mathbb{N}$ with $r \geq 2$. For $1 \leq i \leq r$, let $\phi_i : \mathbb{C}^N \to \mathbb{C}^N$ be an affine transformation which means there is an $N \times N$-matrix $A_i \in M_N(\mathbb{C})$ and a vector $v_i \in \mathbb{C}^N$ such that $\phi_i(x) = A_i x + v_i$ for every $x \in \mathbb{C}^N$. For every i, let $P_i \in \mathbb{C}^N$ that is not ϕ_i-preperiodic. If none of the eigenvalues of A_i is a root of unity for every i then

$$\{(n_1, \ldots, n_r) \in \mathbb{N}^r : \phi_1^{n_1}(P_1) = \ldots = \phi_r^{n_r}(P_r)\}$$

is a finite union of arithmetic progressions in \mathbb{N}^r.
Why the condition on eigenvalues is necessary?

(i) Consider $\phi_1, \phi_2 : \mathbb{C} \rightarrow \mathbb{C}$ given by $\phi_1(x) = x + 1$ and $\phi_2(x) = 2x$.

(ii) $P_1 = 0$ and $P_2 = 1$ so that $\phi_1^n(P_1) = n$ and $\phi_2^m(P_2) = 2^m$.

(iii) The set $\{(n, m) : \phi_1^n(P_1) = \phi_2^m(P_2)\}$ is exactly $\{(2^m, m) : m \in \mathbb{N}\}$.
Why the condition on eigenvalues is necessary?

(i) Consider \(\phi_1, \phi_2 : \mathbb{C} \rightarrow \mathbb{C} \) given by \(\phi_1(x) = x + 1 \) and \(\phi_2(x) = 2x \).

(ii) \(P_1 = 0 \) and \(P_2 = 1 \) so that \(\phi_1^n(P_1) = n \) and \(\phi_2^m(P_2) = 2^m \).

(iii) The set \(\{(n, m) : \phi_1^n(P_1) = \phi_2^m(P_2)\} \) is exactly \(\{(2^m, m) : m \in \mathbb{N}\} \).
Why the condition on eigenvalues is necessary?

(i) Consider $\phi_1, \phi_2 : \mathbb{C} \to \mathbb{C}$ given by $\phi_1(x) = x + 1$ and $\phi_2(x) = 2x$.

(ii) $P_1 = 0$ and $P_2 = 1$ so that $\phi_1^n(P_1) = n$ and $\phi_2^m(P_2) = 2^m$.

(iii) The set $\{(n, m) : \phi_1^n(P_1) = \phi_2^m(P_2)\}$ is exactly $\{(2^m, m) : m \in \mathbb{N}\}$.
Why the condition on eigenvalues is necessary?

(i) Consider $\phi_1, \phi_2 : \mathbb{C} \rightarrow \mathbb{C}$ given by $\phi_1(x) = x + 1$ and $\phi_2(x) = 2x$.

(ii) $P_1 = 0$ and $P_2 = 1$ so that $\phi_1^n(P_1) = n$ and $\phi_2^m(P_2) = 2^m$.

(iii) The set $\{(n, m) : \phi_1^n(P_1) = \phi_2^m(P_2)\}$ is exactly $\{(2^m, m) : m \in \mathbb{N}\}$.
Now X is a **semiabelian variety**. **Fact:** every morphism ϕ from X to itself is an endomorphism followed by a translate (i.e. $\exists \phi_0 \in \text{End}(X)$ and $y \in X$ such that $\phi(x) = \phi_0(x) + y \ \forall x \in X$).

Theorem (Ghioca-N., 2016)

Let $r \geq 2$. For $1 \leq i \leq r$, let ϕ_i be a self-map of X. Write $\phi_i = \phi_{i,0} + y_i$ with $\phi_{i,0} \in \text{End}(X)$ and $y_i \in X$ as above and let $D\phi_{i,0}$ be the linear transformation of the tangent space at identity of X induced by $\phi_{i,0}$. For each i, let $P_i \in X$ that is not ϕ_i-preperiodic. If none of the eigenvalues of $D\phi_{i,0}$ is a root of unity for every i then

$$\{(n_1, \ldots, n_r) : \phi_1^{n_1}(P_1) = \ldots = \phi_r^{n_r}(P_r)\}$$

is a finite union of arithmetic progressions in \mathbb{N}^r.
Now \(X \) is a **semiabelian variety**. Fact: every morphism \(\phi \) from \(X \) to itself is an endomorphism followed by a translate (i.e. \(\exists \phi_0 \in \text{End}(X) \) and \(y \in X \) such that \(\phi(x) = \phi_0(x) + y \ \forall x \in X \)).

Theorem (Ghioca-N., 2016)

Let \(r \geq 2 \). For \(1 \leq i \leq r \), let \(\phi_i \) be a self-map of \(X \). Write \(\phi_i = \phi_{i,0} + y_i \) with \(\phi_{i,0} \in \text{End}(X) \) and \(y_i \in X \) as above and let \(D\phi_{i,0} \) be the linear transformation of the tangent space at identity of \(X \) induced by \(\phi_{i,0} \). For each \(i \), let \(P_i \in X \) that is not \(\phi_i \)-preperiodic. If none of the eigenvalues of \(D\phi_{i,0} \) is a root of unity for every \(i \) then

\[
\{(n_1, \ldots, n_r) : \phi_1^{n_1}(P_1) = \ldots = \phi_r^{n_r}(P_r)\}
\]

is a finite union of arithmetic progressions in \(\mathbb{N}^r \).
References:

If there’s enough time:

- A list of some proof techniques
- Some fractals
We have introduced dynamical analogues of 4 important topics in diophantine geometry. Here is a list of some techniques used in the proofs of those analogues:

- Equidistribution results for certain canonical measures associated to our dynamical systems.
- Geometric and analytic properties of certain Julia sets and generalized Mandelbrot sets.
- Complex and p-adic analytic functions.
- Properties of height and canonical height functions.
- Classical results on diophantine equations involving curves (Siegel’s theorem, Faltings’ theorem,...) and polynomial-exponential functions (Skolem-Mahler-Lech theorem, Laurent’s theorem,...),...
We have introduced dynamical analogues of 4 important topics in diophantine geometry. Here is a list of some techniques used in the proofs of those analogues:

- Equidistribution results for certain canonical measures associated to our dynamical systems.
- Geometric and analytic properties of certain Julia sets and generalized Mandelbrot sets.
- Complex and p-adic analytic functions.
- Properties of height and canonical height functions.
- Classical results on diophantine equations involving curves (Siegel’s theorem, Faltings’ theorem,...) and polynomial-exponential functions (Skolem-Mahler-Lech theorem, Laurent’s theorem,...).
We have introduced dynamical analogues of 4 important topics in diophantine geometry. Here is a list of some techniques used in the proofs of those analogues:

- Equidistribution results for certain canonical measures associated to our dynamical systems.
- Geometric and analytic properties of certain Julia sets and generalized Mandelbrot sets.
- Complex and p-adic analytic functions.
- Properties of height and canonical height functions.
- Classical results on diophantine equations involving curves (Siegel’s theorem, Faltings’ theorem,...) and polynomial-exponential functions (Skolem-Mahler-Lech theorem, Laurent’s theorem,...)...
We have introduced dynamical analogues of 4 important topics in diophantine geometry. Here is a list of some techniques used in the proofs of those analogues:

- Equidistribution results for certain canonical measures associated to our dynamical systems.
- Geometric and analytic properties of certain Julia sets and generalized Mandelbrot sets.
- Complex and p-adic analytic functions.
- Properties of height and canonical height functions.
- Classical results on diophantine equations involving curves (Siegel’s theorem, Faltings’ theorem,...) and polynomial-exponential functions (Skolem-Mahler-Lech theorem, Laurent’s theorem,...),...
We have introduced dynamical analogues of 4 important topics in diophantine geometry. Here is a list of some techniques used in the proofs of those analogues:

- Equidistribution results for certain canonical measures associated to our dynamical systems.
- Geometric and analytic properties of certain Julia sets and generalized Mandelbrot sets.
- Complex and p-adic analytic functions.
- Properties of height and canonical height functions.
- Classical results on diophantine equations involving curves (Siegel’s theorem, Faltings’ theorem,...) and polynomial-exponential functions (Skolem-Mahler-Lech theorem, Laurent’s theorem,...),...
Some proof techniques

We have introduced dynamical analogues of 4 important topics in diophantine geometry. Here is a list of some techniques used in the proofs of those analogues:

- Equidistribution results for certain canonical measures associated to our dynamical systems.
- Geometric and analytic properties of certain Julia sets and generalized Mandelbrot sets.
- Complex and p-adic analytic functions.
- Properties of height and canonical height functions.
- Classical results on diophantine equations involving curves (Siegel’s theorem, Faltings’ theorem,...) and polynomial-exponential functions (Skolem-Mahler-Lech theorem, Laurent’s theorem,...),...
Equip $\mathbb{P}^1(\mathbb{C})$ with the chordal metric:

$$
\rho([X_1 : Y_1], [X_2 : Y_2]) = \frac{|X_1 Y_2 - X_2 Y_1|}{\sqrt{X_1^2 + Y_1^2} \sqrt{X_2^2 + Y_2^2}}
$$

so that we can discuss normal families of maps.

Fatou sets and Julia sets: every rational function in $\mathbb{C}(z)$ is regarded as a holomorphic map from $\mathbb{P}^1(\mathbb{C})$ to itself. Let $f(z) \in \mathbb{C}(z)$ with $\text{deg}(f) \geq 2$:

- The Fatou set of f, denoted F_f, is the largest open subset of $\mathbb{P}^1(\mathbb{C})$ over which the family of iterates $\{f, f^2, f^3, \ldots, \}$ is a normal family.

- The Julia set of f, denoted J_f, is the complement of the Fatou set: $J_f := \mathbb{P}^1(\mathbb{C}) \setminus F_f$. Fact: $J_f \neq \emptyset$.

Khoa D. Nguyen

Unlikely Intersections
Equip \(\mathbb{P}^1(\mathbb{C}) \) with the chordal metric:

\[
\rho([X_1 : Y_1], [X_2 : Y_2]) = \frac{|X_1 Y_2 - X_2 Y_1|}{\sqrt{X_1^2 + Y_1^2} \sqrt{X_2^2 + Y_2^2}}
\]

so that we can discuss normal families of maps.

Fatou sets and Julia sets: every rational function in \(\mathbb{C}(z) \) is regarded as a holomorphic map from \(\mathbb{P}^1(\mathbb{C}) \) to itself. Let \(f(z) \in \mathbb{C}(z) \) with \(\deg(f) \geq 2 \):

- The Fatou set of \(f \), denoted \(F_f \), is the largest open subset of \(\mathbb{P}^1(\mathbb{C}) \) over which the family of iterates \(\{f, f^2, f^3, \ldots, \} \) is a normal family.

- The Julia set of \(f \), denoted \(J_f \), is the complement of the Fatou set: \(J_f := \mathbb{P}^1(\mathbb{C}) \setminus F_f. \) Fact: \(J_f \neq \emptyset \).
Equip $\mathbb{P}^1(\mathbb{C})$ with the chordal metric:

\[
\rho([X_1 : Y_1], [X_2 : Y_2]) = \frac{|X_1 Y_2 - X_2 Y_1|}{\sqrt{X_1^2 + Y_1^2} \sqrt{X_2^2 + Y_2^2}}
\]

so that we can discuss normal families of maps.

Fatou sets and Julia sets: every rational function in $\mathbb{C}(z)$ is regarded as a holomorphic map from $\mathbb{P}^1(\mathbb{C})$ to itself. Let $f(z) \in \mathbb{C}(z)$ with $\text{deg}(f) \geq 2$:

- The Fatou set of f, denoted F_f, is the largest open subset of $\mathbb{P}^1(\mathbb{C})$ over which the family of iterates $\{f, f^2, f^3, \ldots, \}$ is a normal family.
- The Julia set of f, denoted J_f, is the complement of the Fatou set: $J_f := \mathbb{P}^1(\mathbb{C}) \setminus F_f$. Fact: $J_f \neq \emptyset$.
Figure: F_f and J_f when $f(z) = z^2 + (-0.79 + 0.156i)$.

Khoa D. Nguyen

Unlikely Intersections
Figure: F_f and J_f when $f(z) = z^2 + 0.75i$.
Figure: F_f and J_f when $f(z) = 1 + \frac{-3.2 + 0.96i}{z^2}$.
Generalized Mandelbrot Sets: fix $d \geq 2$ and consider the family $\{P_c(z) = z^d + c\}_{c \in \mathbb{C}}$ of polynomials with parameter c. Define:

$$M_d := \{ c \in \mathbb{C} : \sup_{n \geq 0} |P_c^n(0)| < \infty \}.$$

Motivation: P_c has two critical points, namely ∞ and 0. Obviously: elements in the orbit of ∞ remain at ∞. Now define M_d to be the set of $c \in \mathbb{C}$ such that elements in the orbit of 0 “do not stay far away from each other”.

When $d = 2$, this gives the famous Mandelbrot set. Some people also call M_d a “multibrot set”.
Generalized Mandelbrot Sets: fix $d \geq 2$ and consider the family \(\{P_c(z) = z^d + c\}_{c \in \mathbb{C}} \) of polynomials with parameter c. Define:

\[
M_d := \{ c \in \mathbb{C} : \sup_{n \geq 0} |P^*_c(0)| < \infty \}.
\]

Motivation: P_c has two critical points, namely ∞ and 0. Obviously: elements in the orbit of ∞ remain at ∞. Now define M_d to be the set of $c \in \mathbb{C}$ such that elements in the orbit of 0 “do not stay far away from each other”.

When $d = 2$, this gives the famous Mandelbrot set. Some people also call M_d a “multibrot set”.
Generalized Mandelbrot Sets: fix $d \geq 2$ and consider the family \(\{ P_c(z) = z^d + c \}_{c \in \mathbb{C}} \) of polynomials with parameter c. Define:

\[
M_d := \{ c \in \mathbb{C} : \sup_{n \geq 0} |P_c^n(0)| < \infty \}.
\]

Motivation: P_c has two critical points, namely ∞ and 0. Obviously: elements in the orbit of ∞ remain at ∞. Now define M_d to be the set of $c \in \mathbb{C}$ such that elements in the orbit of 0 “do not stay far away from each other”.

When $d = 2$, this gives the famous Mandelbrot set. Some people also call M_d a “multibrot set”.

Khoa D. Nguyen
Unlikely Intersections
Figure: M_2
Figure: M_5
Figure: M_8
THANK YOU!